【題目】如圖,已知RtABC中,CAB=60°,點(diǎn)O為斜邊AB上一點(diǎn),且OA=2,以OA為半徑的OBC相切于D,與AC交于點(diǎn)E,連接AD

1)求線段CD的長;

2)求ORtABC重疊部分的面積.(結(jié)果保留準(zhǔn)確值)

【答案】1CD=;(2

【解析】

1)連接OD,由切線的性質(zhì)和直角三角形的性質(zhì)得出OB2OD4,BDOD2,得出ABOA+OB6ACAB3,BCAC3,即可得出結(jié)果;

2)連接OE,證出△OAE是等邊三角形,得出∠AOE60°,∠EOG120°,作EFOAF,則OF1,EFOF,ORtABC重疊部分的面積=△AOE的面積+扇形OEDG的面積,即可得出結(jié)果,

1)連接OD,如圖1所示:

OA為半徑的OBC相切于D

∴∠ODB=90°

OD=OA=2,C=90°,CAB=60°,

∴∠B=30°,

OB=2OD=4,BD=OD=2,

AB=OA+OB=6

AC=AB=3,

BC=AC=3,

CD=BCBD=;

2)連接OE,如圖2所示:

OA=OE

∵∠CAB=60°

∴△OAE是等邊三角形,

∴∠AOE=60°,

∴∠EOG=120°,

EFOAF,

OF=1,EF=OF=

∴⊙ORt△ABC重疊部分的面積=△AOE的面積+扇形OEDG的面積=×2×+=+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限的交點(diǎn)為

1)求的值;

2)設(shè)一次函數(shù)的圖像與軸交于點(diǎn),連接,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一勘測人員從山腳點(diǎn)出發(fā),沿坡度為的坡面行至點(diǎn)處時(shí),他的垂直高度上升了米;然后再從點(diǎn)處沿坡角為的坡面米/分鐘的速度到達(dá)山頂點(diǎn)時(shí),用了分鐘.

(1)求點(diǎn)到點(diǎn)之間的水平距離;

(2)求山頂點(diǎn)處的垂直高度是多少米?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】費(fèi)爾茲獎(jiǎng)是國際上享有崇高榮譽(yù)的一個(gè)數(shù)學(xué)獎(jiǎng)項(xiàng),每4年評(píng)選一次,在國際數(shù)學(xué)家大會(huì)上頒給有卓越貢獻(xiàn)的年齡不超過40歲的年輕數(shù)學(xué)家,美籍華人丘成桐1982年獲得費(fèi)爾茲獎(jiǎng).為了讓學(xué)生了解費(fèi)爾茲獎(jiǎng)得主的年齡情況,我們查取了截止到201860名費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡數(shù)據(jù),并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.

a.截止到2018年費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡數(shù)據(jù)的頻數(shù)分布直方圖如圖1(數(shù)據(jù)分成5組,各組是28≤x31,31≤x3434≤x37,37≤x40x≥40):

b.如圖2,在a的基礎(chǔ)上,畫出扇形統(tǒng)計(jì)圖;

c.截止到2018年費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡在34≤x37這一組的數(shù)據(jù)是:

36

35

34

35

35

34

34

35

36

36

36

36

34

35

d.截止到2018年時(shí)費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡的平均數(shù)、中位數(shù)、眾數(shù)如下:

年份

平均數(shù)

中位數(shù)

眾數(shù)

截止到2018

35.58

m

37,38

根據(jù)以上信息,回答下列問題:

1)依據(jù)題意,補(bǔ)全頻數(shù)直方圖;

231≤x34這組的圓心角度數(shù)是度,并補(bǔ)全扇形統(tǒng)計(jì)圖;

3)統(tǒng)計(jì)表中中位數(shù)m的值是;

4)根據(jù)以上統(tǒng)計(jì)圖表試描述費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡分布特征.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線y=x+7a+1與直線y=2x2a+4同時(shí)經(jīng)過點(diǎn)P,點(diǎn)Q是以M0,﹣1)為圓心,MO為半徑的圓上的一個(gè)動(dòng)點(diǎn),則線段PQ的最小值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為1的正方形紙片ABCD折疊,使點(diǎn)B的對(duì)應(yīng)點(diǎn)M落在邊CD上(不與點(diǎn)CD重合),折痕為EF,AB的對(duì)應(yīng)線段MGAD于點(diǎn)N.以下結(jié)論正確的有( 。佟MBN45°;②MDN的周長是定值;③MDN的面積是定值.

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),二次函數(shù)的圖象與軸、直線的交點(diǎn)分別為點(diǎn)、

圖(1 圖(2 (備用圖)

1_________,_________=_________;

2)連接AB,點(diǎn)是拋物線上一點(diǎn)(異于點(diǎn)A),且,求點(diǎn)的坐標(biāo);

3)如圖(2),點(diǎn)、是線段上的動(dòng)點(diǎn),且.設(shè)點(diǎn)的橫坐標(biāo)為

①過點(diǎn)、分別作軸的垂線,與拋物線相交于點(diǎn)、,連接.當(dāng)取得最大值時(shí),求的值并判斷四邊形的形狀;

②連接、,求為何值時(shí),取得最小值,并求出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為5,EF是長為8的弦,OGEF于點(diǎn)G,點(diǎn)AGO的延長線上,且AO=13.弦EF從圖1的位置開始繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)過程中始終保持OGEF,如圖2.

[發(fā)現(xiàn)]在旋轉(zhuǎn)過程中,

(1)AG的最小值是   ,最大值是   

(2)當(dāng)EFAO時(shí),旋轉(zhuǎn)角α=   

[探究]EF繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°,如圖3,求AG的長.

[拓展]如圖4,當(dāng)AE切⊙O于點(diǎn)E,AGEO于點(diǎn)C,GHAEH.

(1)求AE的長.

(2)此時(shí)EH=   ,EC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+mx+nx軸相交于點(diǎn)AB兩點(diǎn),過點(diǎn)B的直線y=x+b交拋物線于另一點(diǎn)C(-5,6,點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)BC不重合),作DEAC,交該拋物線于點(diǎn)E,

1)求m,n,b的值;

2)求tanACB;

3)探究在點(diǎn)D運(yùn)動(dòng)過程中,是否存在∠DEA=45°,若存在,則求此時(shí)線段AE的長;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案