【題目】費爾茲獎是國際上享有崇高榮譽的一個數(shù)學(xué)獎項,每4年評選一次,在國際數(shù)學(xué)家大會上頒給有卓越貢獻(xiàn)的年齡不超過40歲的年輕數(shù)學(xué)家,美籍華人丘成桐1982年獲得費爾茲獎.為了讓學(xué)生了解費爾茲獎得主的年齡情況,我們查取了截止到2018年60名費爾茲獎得主獲獎時的年齡數(shù)據(jù),并對數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.
a.截止到2018年費爾茲獎得主獲獎時的年齡數(shù)據(jù)的頻數(shù)分布直方圖如圖1(數(shù)據(jù)分成5組,各組是28≤x<31,31≤x<34,34≤x<37,37≤x<40,x≥40):
b.如圖2,在a的基礎(chǔ)上,畫出扇形統(tǒng)計圖;
c.截止到2018年費爾茲獎得主獲獎時的年齡在34≤x<37這一組的數(shù)據(jù)是:
36 | 35 | 34 | 35 | 35 | 34 | 34 | 35 | 36 | 36 | 36 | 36 | 34 | 35 |
d.截止到2018年時費爾茲獎得主獲獎時的年齡的平均數(shù)、中位數(shù)、眾數(shù)如下:
年份 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
截止到2018 | 35.58 | m | 37,38 |
根據(jù)以上信息,回答下列問題:
(1)依據(jù)題意,補全頻數(shù)直方圖;
(2)31≤x<34這組的圓心角度數(shù)是度,并補全扇形統(tǒng)計圖;
(3)統(tǒng)計表中中位數(shù)m的值是;
(4)根據(jù)以上統(tǒng)計圖表試描述費爾茲獎得主獲獎時的年齡分布特征.
【答案】(1)如圖見解析;(2)31≤x<34這組的圓心角度數(shù)是 78度,補全扇形統(tǒng)計圖見解析;(3)中位數(shù)m的值是 36;(4)答案不唯一,如:費爾茲獎得主獲獎時年齡集中在37歲至40歲.
【解析】
(1)根據(jù)總?cè)藬?shù)為60求出第二組的人數(shù)即可解決問題;
(2)根據(jù)圓心角=360°×百分比計算即可,根據(jù)百分比的和為1,求出第二組的百分比,即可畫出扇形統(tǒng)計圖;
(3)根據(jù)中位數(shù)的定義,中位數(shù)等于第30,31的年齡的平均數(shù);
(4)答案不唯一,合理即可.
(1)如圖;
(2)31≤x<34這組的圓心角度數(shù)=360°×21.7%≈78°;
(3)中位數(shù)等于第30,31的年齡的平均數(shù),第30,31的年齡位于34≤x<37組的最后2個,為36,36,故統(tǒng)計表中中位數(shù)m的值是 36;
(4)答案不唯一,如:費爾茲獎得主獲獎時年齡集中在37歲至40歲.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,給出下列四個結(jié)論:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正確結(jié)論的個數(shù)是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A、B是反比例函數(shù)y=(k≠0)圖象上的兩點,延長線段AB交y軸于點C,且點B為線段AC中點,過點A作AD⊥x軸于點D,點E為線段OD的三等分點,且OE<DE.連接AE、BE,若S△ABE=7,則k的值為( )
A.﹣12B.﹣10C.﹣9D.﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角△OAB的斜邊OB在x軸上,且OB=4,反比例函數(shù)y=(x>0)的圖象經(jīng)過OA的中點C,交AB于點D,則點D坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三名快遞員某天的工作情況如圖所示,其中點,,的橫、縱坐標(biāo)分別表示甲、乙、丙三名快遞員上午派送快遞所用的時間和件數(shù);點,,,的橫、縱坐標(biāo)分別表示甲、乙、丙三名快遞員下午派送快遞所用的時間和件數(shù).有如下三個結(jié)論:①上午派送快遞所用時間最短的是甲;②下午派送快遞件數(shù)最多的是丙;③在這一天中派送快遞總件數(shù)最多的是乙.上述結(jié)論中,所有正確結(jié)論的序號是( )
A. ①②B. ①③C. ②D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個三位數(shù)兩個數(shù)位上數(shù)字的和等于另一個數(shù)位上的數(shù)字,則稱這個三位數(shù)為“均衡三位數(shù)”.現(xiàn)從1,2,3,4,5這5個數(shù)字中任取三個數(shù)字,組成無重復(fù)數(shù)字且百位數(shù)字、十位數(shù)字、個位數(shù)字依次增大的三位數(shù).
(1)請列舉出所有可能得到的三位數(shù);
(2)小明和小亮玩一個游戲,游戲規(guī)則如下:若(1)中組成的三位數(shù)是“均衡三位數(shù)”,則小明勝;否則小亮勝.這個游戲公平嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,CAB=60°,點O為斜邊AB上一點,且OA=2,以OA為半徑的⊙O與BC相切于D,與AC交于點E,連接AD.
(1)求線段CD的長;
(2)求⊙O與Rt△ABC重疊部分的面積.(結(jié)果保留準(zhǔn)確值)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,點E在邊AD上,點F在邊BC上,且AE=CF,作EG∥FH,分別與對角線BD交于點G、H,連接EH,FG.
(1)求證:△BFH≌△DEG;
(2)連接DF,若BF=DF,則四邊形EGFH是什么特殊四邊形?證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com