問題背景:

在△ABC中,ABBC、AC三邊的長分別為、、,求這個三角形的面積.

小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.

(1)請你將△ABC的面積直接填寫在橫線上.__________________

思維拓展:

(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.若△ABC三邊的長分別為a、2a、a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.

探索創(chuàng)新:

(3)若△ABC三邊的長分別為、、2(m>0,n>0,且mn),試運(yùn)用構(gòu)圖法求出這三角形的面積.

 


 (1)

(2) 可看作兩直角邊為的直角三角形的斜邊,類似,△ABC如圖所示(位置不唯一)

 (3)構(gòu)造△ABC如圖所示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
13
,求這個三角形的面積小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂精英家教網(wǎng)點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上.
 

(2)畫△DEF,DE、EF、DF三邊的長分別為
2
8
、
10

①判斷三角形的形狀,說明理由.
②求這個三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:
在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形的面積.
小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.我們把上述求△ABC面積的方法叫做構(gòu)圖法.
(1)若△ABC三邊的長分別為
5
a,2
2
a,
17
a
(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.
思維拓展:
(2)若△ABC三邊的長分別為
m2+16n2
9m2+4n2
,2
m2+n2
(m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法求出這三角形的面積.
探索創(chuàng)新:
(3)已知a、b都是正數(shù),a+b=3,求當(dāng)a、b為何值時
a2+4
+
b2+25
有最小值,并求這個最小值.
(4)已知a,b,c,d都是正數(shù),且a2+b2=c2,c
a2-d2
=a2,求證:ab=cd.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求此三角形的面積.小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖①所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.
(1)請你將△ABC的面積直接填寫在橫線上:
3.5
3.5

思維拓展:
(2)我們把上述求△ABC面積的方法叫做構(gòu)圖法.如果△ABC三邊的長分別
5
a、
8
a、
17
a(a>0),請利用圖②的正方形網(wǎng)格(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:“在△ABC中,AB、BC、AC三邊的長分別為
5
10
、
13
,求這個三角形的面積.”
小輝同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)絡(luò)中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處),
(1)如圖所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積是
3.5
3.5

(2)如圖我們把上述求面積的方法叫做構(gòu)圖法.若△DCE三邊的長分別為
m2+16n2
9m2+4n2
、
4m2+4n2
(m>0,n>0,且m≠n),試運(yùn)用構(gòu)圖法求出這三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題背景:在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
13
,求這個三角形BC邊上的高.
杰杰同學(xué)在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)△ABC(即△ABC三個頂點(diǎn)都在小正方形的頂點(diǎn)處).借用網(wǎng)格等知識就能計算出這個三角形BC邊上的高.
(1)請?jiān)谡叫尉W(wǎng)格中畫出格點(diǎn)△ABC;
(2)求出這個三角形BC邊上的高.

查看答案和解析>>

同步練習(xí)冊答案