【題目】如圖,在△ABC中,E點為AC的中點,其中BD=1,DC=3,BC= ,AD= ,求DE的長.
【答案】解:∵BD=1,DC=3,BC= ,
又∵12+32=( )2,
∴BD2+CD2=BC2,
∴△BCD是直角三角形且∠BDC=90°,
∴∠ADC=90°,
∴AC= =4,
又∵E點為AC的中點
∴DE= =2.
【解析】首先根據(jù)勾股定理的逆定理判定△BCD是直角三角形且∠BDC=90°,再利用勾股定理可求出AC的長,進而可求出DE的長.
【考點精析】關(guān)于本題考查的勾股定理的概念和勾股定理的逆定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個三角形是直角三角形才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,O為直線AB上一點,∠DOE=90°.
(1)如圖1,若∠AOC=130°,OD平分∠AOC.
①求∠BOD的度數(shù);
②請通過計算說明OE是否平分∠BOC.
(2)如圖2,若∠BOE:∠AOE=2:7,求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,BD垂直平分AC,垂足為點F,E為四邊形ABCD外一點,且∠ADE=∠BAD,AE⊥AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD,對角線AC和BD相交于O,下面選項不能得出四邊形ABCD是平行四邊形的是( )
A.AB∥CD,且AB=CD
B.AB=CD,AD=BC
C.AO=CO,BO=DO
D.AB∥CD,且AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=65°,∠2=65°,∠3=115°.試說明:DE∥BC,DF∥AB.根據(jù)圖形,完成下面的推理:
因為∠1=65°,∠2=65°,
所以∠1=∠2.
所以______________∥ ( ).
因為AB與DE相交,
所以∠1=∠4( ).
所以∠4=65°.
又因為∠3=115°,
所以∠3+∠4=180°.
所以 ∥ ( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,請分別根據(jù)已知條件進行推理,得出結(jié)論,并在括號內(nèi)注明理由.
①∵ ∠B=∠3(已知),∴______∥______.(______,______)
②∵∠1=∠D (已知),∴______∥______.(______,______)
③∵∠2=∠A (已知),∴______∥______.(______,______)
④∵∠B+∠BCE=180° (已知),∴______∥______.(______,______)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com