【題目】已知關(guān)于的方程有兩個(gè)實(shí)數(shù)根.
(1)求的取值范圍;
(2)若,求的值;
【答案】(1);(2)k=-3
【解析】
(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0;(2)依題意x1+x2=2(k-1),x1·x2=k2
以下分兩種情況討論:①當(dāng)x1+x2≥0時(shí),則有x1+x2=x1·x2-1,即2(k-1)=k2-1;②當(dāng)x1+x2<0時(shí),則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1);
解:(1)依題意得△≥0,即[-2(k-1)]2-4k2≥0
解得
(2)依題意x1+x2=2(k-1),x1·x2=k2
以下分兩種情況討論:
①當(dāng)x1+x2≥0時(shí),則有x1+x2=x1·x2-1,即2(k-1)=k2-1
解得k1=k2=1
∵
∴k1=k2=1不合題意,舍去
②當(dāng)x1+x2<0時(shí),則有x1+x2=-(x1·x2-1),即2(k-1)=-(k2-1)
解得k1=1,k2=-3
∵
∴k=-3
綜合①、②可知k=-3
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.已知點(diǎn)A的坐標(biāo)為(﹣1,0),點(diǎn)O為坐標(biāo)原點(diǎn),OC=3OA,拋物線C1的頂點(diǎn)為G.
(1)求出拋物線C1的解析式,并寫出點(diǎn)G的坐標(biāo);
(2)如圖2,將拋物線C1向下平移k(k>0)個(gè)單位,得到拋物線C2,設(shè)C2與x軸的交點(diǎn)為A′、B′,頂點(diǎn)為G′,當(dāng)△A′B′G′是等邊三角形時(shí),求k的值:
(3)在(2)的條件下,如圖3,設(shè)點(diǎn)M為x軸正半軸上一動點(diǎn),過點(diǎn)M作x軸的垂線分別交拋物線C1、C2于P、Q兩點(diǎn),試探究在直線y=﹣1上是否存在點(diǎn)N,使得以P、Q、N為頂點(diǎn)的三角形與△AOQ全等,若存在,直接寫出點(diǎn)M,N的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),B點(diǎn)與C點(diǎn)是直線y=x﹣3與x軸、y軸的交點(diǎn).D為線段AB上一點(diǎn).
(1)求拋物線的解析式及A點(diǎn)坐標(biāo).
(2)若點(diǎn)D在線段OB上,過D點(diǎn)作x軸的垂線與拋物線交于點(diǎn)E,求出點(diǎn)E到直線BC的距離的最大值.
(3)D為線段AB上一點(diǎn),連接CD,作點(diǎn)B關(guān)于CD的對稱點(diǎn)B′,連接AB′、B′D
①當(dāng)點(diǎn)B′落坐標(biāo)軸上時(shí),求點(diǎn)D的坐標(biāo).
②在點(diǎn)D的運(yùn)動過程中,△AB′D的內(nèi)角能否等于45°,若能,求此時(shí)點(diǎn)B′的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】月餅是久負(fù)盛名的中國傳統(tǒng)糕點(diǎn)之一,宋代大詩人蘇東坡有詩句“小餅如嚼月,中有酥和飴”贊美月餅.為滿足市場需求,某超市在“中秋節(jié)”來臨前夕,購進(jìn)一種品牌月餅,每盒進(jìn)價(jià)是40元.超市規(guī)定每盒售價(jià)不低于45元且不超過58元,根據(jù)以往銷售經(jīng)驗(yàn)發(fā)現(xiàn):當(dāng)售價(jià)定為每盒45元時(shí),每天可以賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量(盒)與每盒售價(jià)(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)每盒售價(jià)定為多少元時(shí),每天銷售的利潤(元)最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)拋物線形的拱形橋洞,橋面離水面的距離為5.6米,橋洞離水面的最大高度為,跨度為,如圖所示,把它的圖形放在直角坐標(biāo)系中.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式.
(2)如圖,在對稱軸右邊處,橋洞離橋面的高是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、 F分別為邊AB、CD的中點(diǎn),BD是對角線.過點(diǎn)有作AG∥DB交CB的延長線于點(diǎn)G.
(1)求證:△ADE≌△CBF;
(2)若∠G=90° ,求證:四邊形DEBF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線為正比例函數(shù)的圖象,點(diǎn)的坐標(biāo)為,過點(diǎn)作軸的垂線交直線于點(diǎn),以為邊作正方形;過點(diǎn)作直線的垂線,垂足為,交軸于點(diǎn),以為邊作正方形;過點(diǎn)作軸的垂線,垂足為,交直線于點(diǎn),以為邊作正方形,…,按此規(guī)律操作下所得到的正方形的面積是
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙中,為直徑,、分別切⊙于點(diǎn)、.
(1)如圖①,若,求的大;
(2)如圖②,過點(diǎn)作∥,交于點(diǎn),交⊙于點(diǎn),若,求的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向左平移5個(gè)單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2;并寫出點(diǎn)A2、B2、C2坐標(biāo);
(3)請畫出△ABC繞O逆時(shí)針旋轉(zhuǎn)90°后的△A3B3C3;并寫出點(diǎn)A3、B3、C3坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com