精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC三個頂點的坐標分別為A1,1),B4,2),C3,4).

1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1

2)請畫出△ABC關于原點對稱的△A2B2C2;并寫出點A2、B2、C2坐標;

3)請畫出△ABCO逆時針旋轉90°后的△A3B3C3;并寫出點A3、B3、C3坐標.

【答案】(1)見解析;(2)見解析,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);(3)見解析,A3(﹣1,1)、B3(﹣2,4)、C3(﹣4,3).

【解析】

1)利用平移的性質得出對應點的位置進而得出答案

2)利用關于原點對稱點的性質得出對應點的位置進而得出答案

3)利用旋轉的性質得出旋轉后的點的坐標進而得出答案

解:(1)如圖,△A1B1C1即為所求;

2)如圖,△A2B2C2即為所求,A2(﹣1,﹣1)、B2(﹣4,﹣2)、C2(﹣3,﹣4);

3)如圖,△A3B3C3即為所求,A3(﹣1,1)、B3(﹣2,4)、C3(﹣4,3).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀下列材料,并回答問題.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個結論就是著名的勾股定理.請利用這個結論,完成下面活動:

一個直角三角形的兩條直角邊分別為,那么這個直角三角形斜邊長為____;

如圖①,,求的長度;

如圖②,點在數軸上表示的數是____請用類似的方法在圖2數軸上畫出表示數(保留痕跡).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,在平面直角坐標系中,點,,過點作直線軸互相垂直,軸上的一個動點,且.

(1)如圖1,若點是第二象限內的一個點,且時,求點的坐標;(用的代數式表示)

(2)如圖2,若點是第三象限內的一個點,設點的坐標,求的取值范圍:

(3)如圖3,連接,作的平分線,點、分別是射線與邊上的兩個動點,連接、,當時,試求的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我國古代數學著作《九章算術》中的一個問題.原文是:今有池方一丈,葭生其中央,出水尺.引葭赴岸,適與岸齊問水深、葭長各幾何譯文大意是:如圖,有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根蘆葦,它高出水面1尺.如果把這根蘆葦拉向水池邊的中點,它的頂端恰好到達池邊的水面.問水的深度與這根蘆葦的長度分別是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,以ABCD的較短邊CD為一邊作菱形CDEF,使點F落在邊AD上,連接BE,交AF于點G.

(1)猜想BGEG的數量關系.并說明理由;

(2)延長DE,BA交于點H,其他條件不變,

①如圖2,若∠ADC=60°,求的值;

②如圖3,若∠ADC=α(0°<α<90°),直接寫出的值.(用含α的三角函數表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,BC10BC邊上的高為3.將點A繞點B逆時針旋轉90°得到點E,繞點C順時針旋轉90°得到點D.沿BC翻折得到點F,從而得到一個凸五邊形BFCDE,求五邊形BFCDE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,DC⊥BC,且∠B=45°,AD=DC=1,點M為邊BC上一動點,聯結AM并延長交射線DC于點F,作∠FAE=45°交射線BC于點E、交邊DCN于點N,聯結EF.

(1)當CM:CB=1:4時,求CF的長.

(2)設CM=x,CE=y,求y關于x的函數關系式,并寫出定義域.

(3)當△ABM∽△EFN時,求CM的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,C=90°B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數是

ADBAC的平分線;②∠ADC=60°;DAB的中垂線上;SDACSABC=13

A1 B2 C3 D4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖是某班甲、乙、丙三位同學最近5次數學成績及其所在班級相應平均分的折線統計圖,則下列判斷錯誤的是( ).

A. 甲的數學成績高于班級平均分,且成績比較穩(wěn)定

B. 乙的數學成績在班級平均分附近波動,且比丙好

C. 丙的數學成績低于班級平均分,但成績逐次提高

D. 就甲、乙、丙三個人而言,乙的數學成績最不穩(wěn)

查看答案和解析>>

同步練習冊答案