【題目】如圖(1),為坐標(biāo)原點(diǎn),點(diǎn)在軸的正半軸上,四邊形是平行四邊形,,,反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn),與交于點(diǎn).
(1)求點(diǎn)的坐標(biāo)和反比例函數(shù)解析式;
(2)若,求點(diǎn)的坐標(biāo);
(3)在(2)中的條件下,如圖(2),點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),點(diǎn)為雙曲線上的一個(gè)動(dòng)點(diǎn),是否在這樣的點(diǎn)、點(diǎn),使以、、、為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1), ;(2)點(diǎn);(3)存在,點(diǎn),或,或,.
【解析】
(1)根據(jù),,可知點(diǎn)的坐標(biāo),代入解析式求解;
(2)過(guò)點(diǎn)作于,設(shè),,由平行四邊形的性質(zhì)可得,,,由銳角三角函數(shù)可求用表示的點(diǎn)坐標(biāo),代入解析式可求的值,即可求點(diǎn)坐標(biāo);
(3)分兩種情況討論,由平行四邊形的性質(zhì)可求解.
(1)如圖1,過(guò)點(diǎn)作于點(diǎn),
,,
,,
,根據(jù)題意得:
,可得,
反比例函數(shù)的解析式為,
(2)如圖2,過(guò)點(diǎn)作于,
設(shè),,
四邊形是平行四邊形
,,,
,,
,
,,
,
點(diǎn)
反比例函數(shù)在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn),
(不合題意舍去),
點(diǎn),,點(diǎn),
(3)點(diǎn),點(diǎn)
直線解析式為:
若以為邊,則,,
設(shè)解析式為:,
直線解析式為:,
解得:
,
設(shè)點(diǎn),
,
,
,或
點(diǎn),或,
若以為對(duì)角線,
以、、、為頂點(diǎn)的四邊形是平行四邊形,
,互相平分
設(shè)點(diǎn),
的中點(diǎn)為,
,
的中點(diǎn)為,
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有一塊矩形地皮,計(jì)劃共分九個(gè)區(qū)域區(qū)域甲、乙是兩個(gè)矩形主體建筑,區(qū)域丙為梯形停車(chē)場(chǎng),區(qū)城①-④是四塊三角形綠化區(qū),△AEL和△CIJ為綜合辦公區(qū)(如圖所示).∠HEL=∠ELI=90°,MN//BC.AD=220米,AL=40米,AE=IC=30米.
(1)求HI的長(zhǎng)
(2)若BG=KD,求主體建筑甲和乙的面積和.
(3)設(shè)LK=3x米,綠化區(qū)②的面積為S平方米.若要求綠化區(qū)②與④的面積之差不少于1200平方米,求S關(guān)于x的函數(shù)表達(dá)式.并求出S的最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD 是△ABC 的角平分線,DE,DF 分別是△BAD 和△ACD 的高,得到下列四個(gè)結(jié)論:①OA=OD;②AD⊥EF;③當(dāng)∠A=90°時(shí),四邊形 AEDF 是正方形;④AE+DF=AF+DE.其中正確的是_________(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料,完成(1)-(3)題.
數(shù)學(xué)課上,老師出示了這樣一道題:
如圖,△ABC中,D為BC中點(diǎn),且AD=AC,M為AD中點(diǎn),連結(jié)CM并延長(zhǎng)交AB于N.
探究線段AN、MN、CN之間的數(shù)量關(guān)系,并證明.
同學(xué)們經(jīng)過(guò)思考后,交流了自已的想法:
小明:“通過(guò)觀察和度量,發(fā)現(xiàn)線段AN、AB之間存在某種數(shù)量關(guān)系.”
小強(qiáng):“通過(guò)倍長(zhǎng)不同的中線,可以得到不同的結(jié)論,但都是正確的,大家就大膽的探究吧.”
小偉:“通過(guò)構(gòu)造、證明相似三角形、全等三角形,就可以將問(wèn)題解決.”
......
老師: “若其他條件不變,設(shè)AB=a,則可以用含a的式子表示出線段CM的長(zhǎng).”
(1)探究線段AN、AB之間的數(shù)量關(guān)系,并證明;
(2)探究線段AN、MN、CN之間的數(shù)量關(guān)系,并證明;
(3)設(shè)AB=a,求線段CM的長(zhǎng)(用含a的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為的外接圓,,作直線,于.
(1)圖1,求證:是的切線;
(2)圖2,交于點(diǎn),過(guò)點(diǎn)作,垂足為,交于點(diǎn).
①求證:;
②若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了落實(shí)國(guó)務(wù)院的指示精神,地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶(hù)生產(chǎn)經(jīng)銷(xiāo)一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克)有如下關(guān)系:. 設(shè)這種產(chǎn)品每天的銷(xiāo)售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該產(chǎn)品銷(xiāo)售價(jià)定為每千克多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系內(nèi),已知A(2,3),B(4,1),直線l過(guò)P(m,0),A、B關(guān)于l的對(duì)稱(chēng)點(diǎn)分別為A’、B’,請(qǐng)利用直尺(無(wú)刻度)和圓規(guī)按下列要求作圖.
(1)當(dāng)A’與B重合時(shí),請(qǐng)?jiān)趫D1中畫(huà)出點(diǎn)P位置,并求出m的值;
(2)當(dāng)A’、B’都落在y軸上時(shí),請(qǐng)?jiān)趫D2中畫(huà)出直線l,并求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(1,2)和B(0,-1)且對(duì)稱(chēng)軸為x2.
(1)求這個(gè)二次函數(shù)的解析式;
(2)拋物線上點(diǎn)P(2,m)在圖象上,求△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年,某市某樓盤(pán)以每平方米4000元的均價(jià)對(duì)外銷(xiāo)售.因?yàn)闃潜P(pán)滯銷(xiāo),房地產(chǎn)開(kāi)發(fā)商為了加快資金周轉(zhuǎn),決定進(jìn)行降價(jià)促銷(xiāo),經(jīng)過(guò)連續(xù)兩年下調(diào)后,2015年的均價(jià)為每平方米3240元.
(1)求平均每年下調(diào)的百分率;
(2)假設(shè)2016年的均價(jià)仍然下調(diào)相同的百分率,李明準(zhǔn)備購(gòu)買(mǎi)一套100平方米的住房,他持有現(xiàn)金10萬(wàn)元,可以在銀行貸款20萬(wàn)元,李明的愿望能否實(shí)現(xiàn)(房?jī)r(jià)每平方米按照均價(jià)計(jì)算)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com