(2005•荊門)已知PA是⊙O的切線,A為切點,PBC是過點O的割線,PA=10cm,PB=5cm,則⊙O的半徑長為( )
A.15cm
B.10cm
C.7.5cm
D.5cm
【答案】分析:根據(jù)切割線定理分析解答.
解答:解:根據(jù)切割線定理的PA2=PO•PC,
所以100=5×PC,PC=20cm,BC=20-5=15cm.
因為PBC是過點O的割線,
所以⊙O的半徑長為15×=7.5cm.
故選C.
點評:利用切割線解題時要注意BC是直徑,而求得是半徑,不要誤選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•荊門)已知:如圖,拋物線y=x2-x+m與x軸交于A、B兩點,與y軸交于C點,∠ACB=90°,
(1)求m的值及拋物線頂點坐標(biāo);
(2)過A、B、C的三點的⊙M交y軸于另一點D,連接DM并延長交⊙M于點E,過E點的⊙M的切線分別交x軸、y軸于點F、G,求直線FG的解析式;
(3)在條件(2)下,設(shè)P為上的動點(P不與C、D重合),連接PA交y軸于點H,問是否存在一個常數(shù)k,始終滿足AH•AP=k?如果存在,請寫出求解過程;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年湖北省荊門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•荊門)已知:如圖,拋物線y=x2-x+m與x軸交于A、B兩點,與y軸交于C點,∠ACB=90°,
(1)求m的值及拋物線頂點坐標(biāo);
(2)過A、B、C的三點的⊙M交y軸于另一點D,連接DM并延長交⊙M于點E,過E點的⊙M的切線分別交x軸、y軸于點F、G,求直線FG的解析式;
(3)在條件(2)下,設(shè)P為上的動點(P不與C、D重合),連接PA交y軸于點H,問是否存在一個常數(shù)k,始終滿足AH•AP=k?如果存在,請寫出求解過程;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(14)(解析版) 題型:解答題

(2005•荊門)已知,如圖,四邊形ABCD內(nèi)接于圓,延長AD、BC相交于點E,點F是BD的延長線上的點,且DE平分∠CDF
(1)求證:AB=AC;
(2)若AC=3cm,AD=2cm,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(13)(解析版) 題型:解答題

(2005•荊門)已知,如圖,四邊形ABCD內(nèi)接于圓,延長AD、BC相交于點E,點F是BD的延長線上的點,且DE平分∠CDF
(1)求證:AB=AC;
(2)若AC=3cm,AD=2cm,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一元二次方程》(05)(解析版) 題型:解答題

(2005•荊門)已知:關(guān)于x的方程x2-(k+1)x+k2+1=0的兩根是一個矩形兩鄰邊的長.
(1)k取何值時,方程有兩個實數(shù)根;
(2)當(dāng)矩形的對角線長為時,求k的值.

查看答案和解析>>

同步練習(xí)冊答案