【題目】定義:二元一次不等式是指含有兩個(gè)未知數(shù)(即二元),并且未知數(shù)的次數(shù)是1次(即一次)的不等式;滿足二元一次不等式(組)的x和y的取值構(gòu)成有序數(shù)對(duì)(x,y),所有這樣的有序數(shù)對(duì)(x,y)構(gòu)成的集合稱為二元一次不等式(組)的解集.如:x+y>3是二元一次不等式,(1,4)是該不等式的解.有序?qū)崝?shù)對(duì)可以看成直角坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo).于是二元一次不等式(組)的解集就可以看成直角坐標(biāo)系內(nèi)的點(diǎn)構(gòu)成的集合.
(1)已知A(,1),B (1,﹣1),C (2,﹣1),D(﹣1,﹣1)四個(gè)點(diǎn),請(qǐng)?jiān)谥苯亲鴺?biāo)系中標(biāo)出這四個(gè)點(diǎn),這四個(gè)點(diǎn)中是x﹣y﹣2≤0的解的點(diǎn)是 .
(2)設(shè)的解集在坐標(biāo)系內(nèi)所對(duì)應(yīng)的點(diǎn)形成的圖形為G.
①求G的面積;
②P(x,y)為G內(nèi)(含邊界)的一點(diǎn),求3x+2y的取值范圍;
(3)設(shè)的解集圍成的圖形為M,直接寫出拋物線y=x2+2mx+3m2﹣m﹣1與圖形M有交點(diǎn)時(shí)m的取值范圍.
【答案】(1):A、B、D;(2)①3;②﹣12≤3x+2y≤1;(3)0≤m≤.
【解析】
(1)在直角坐標(biāo)系描出A、B、C、D四點(diǎn),觀察圖形即可得出結(jié)論
(2)①分別畫出直線y=2x+1、y=-x-2、y=-3得出圖形為G,從而求出G的面積;
②根據(jù)P(x,y)為G內(nèi)(含邊界)的一點(diǎn),求出x、y的范圍,從而3x+2y的取值范圍;
(3)分別畫出直線y=2x+1、y=2x-1、y=-2x-1、y=-2x+1所圍成的圖形M,再根據(jù)拋物線的對(duì)稱軸x=﹣m,和拋物線y=x2+2mx+3m2﹣m﹣1與圖形M有交點(diǎn),從而求出m的取值范圍
解:(1)如圖所示:
這四個(gè)點(diǎn)中是x﹣y﹣2≤0的解的點(diǎn)是A、B、D.
故答案為:A、B、D;
(2)①如圖所示:
不等式組在坐標(biāo)系內(nèi)形成的圖形為G,
所以G的面積為:×3×2=3.
②根據(jù)圖象得:
﹣2≤x≤1,﹣3≤y≤﹣1,
∴﹣6≤3x≤3,﹣6≤2y≤﹣2,
∴﹣12≤3x+2y≤1.
答:3x+2y的取值范圍為﹣12≤3x+2y≤1.
(3)
如圖所示為
不等式組的解集圍成的圖形,設(shè)為M,
拋物線y=x2+2mx+3m2﹣m﹣1與圖形M有交點(diǎn)時(shí)m的取值范圍:
∵拋物線的對(duì)稱軸x=﹣m,
﹣m≥﹣,或﹣m≤,
∴m或m≥﹣.
又﹣1≤3m2﹣m﹣1≤1,
∴0≤m≤,
綜上:m的取值范圍是0≤m≤
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB為⊙O的直徑,過O點(diǎn)作OC⊥AB且交⊙O于C點(diǎn),延長AB到D,過點(diǎn)D作⊙O的切線DE,切點(diǎn)為E,連接CE交AB于F點(diǎn).
(1)求證:DE=DF;
(2)若⊙O的半徑為2,求CF·CE的值;
(3)若⊙O的半徑為2,∠D=30°,則陰影部分的面積 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,F是⊙O外一點(diǎn),過點(diǎn)F作FD⊥AB于點(diǎn)D,交弦AC于點(diǎn)E,且FC=FE.
(1)求證:FC是⊙O的切線;
(2)若⊙O的半徑為5,cos∠FCE=,求弦AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮將筆記本電腦水平放置在桌子上,顯示屏OA與底板OB所在水平線的夾角為120°時(shí),感覺最舒適(如圖1),側(cè)面示意圖為圖2;使用時(shí)為了散熱,她在底板下面墊入散熱架BCO'后,電腦轉(zhuǎn)到B O′A′位置(如圖3),側(cè)面示意圖為圖4.已知OA=OB=28cm,O′C⊥OB于點(diǎn)C,O′C=14cm.
(參考數(shù)據(jù):,,)
(1)求∠CBO'的度數(shù).
(2)顯示屏的頂部A'比原來升高了多少cm?(結(jié)果精確到0.1cm)
(3)如圖4,墊入散熱架后,要使顯示屏O′A′與水平線的夾角仍保持120°,則顯示屏O′A′應(yīng)繞點(diǎn)O'按順時(shí)針方向旋轉(zhuǎn)多少度?(不寫過程,只寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,是斜邊AB上的中線,以為直徑的分別交于點(diǎn),過點(diǎn)N作,垂足為.
(1)求證:與相切;
(2)若半徑為,,則的長為_______________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校開展了主題為“垃圾分類,綠色生活新時(shí)尚”的宣傳活動(dòng),為了解學(xué)生對(duì)垃圾分類知識(shí)的掌握情況,該校環(huán)保社團(tuán)成員在校園內(nèi)隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查,將他們的得分按優(yōu)秀、良好、合格、不合格四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),并繪制了如下不完整的統(tǒng)計(jì)表和條形統(tǒng)計(jì)圖.
等級(jí) | 頻數(shù) | 頻率 |
優(yōu)秀 | 20 | |
良好 | ||
合格 | 10 | |
不合格 | 5 |
請(qǐng)根據(jù)以上信息,解答下列問題:
(1)本次調(diào)查隨機(jī)抽取了______名學(xué)生;表中______,______;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若全校有2000名學(xué)生,請(qǐng)你估計(jì)該校掌握垃圾分類知識(shí)達(dá)到“優(yōu)秀”和“良好”等級(jí)的學(xué)生共有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“星光隧道”是貫穿新牌坊商圈和照母山以北的高端居住區(qū)的重要紐帶,預(yù)計(jì)2017年底竣工通車,圖中線段AB表示該工程的部分隧道,無人勘測(cè)飛機(jī)從隧道一側(cè)的點(diǎn)A出發(fā),沿著坡度為1:2的路線AE飛行,飛行至分界點(diǎn)C的正上方點(diǎn)D時(shí),測(cè)得隧道另一側(cè)點(diǎn)B的俯角為12°,繼續(xù)飛行到點(diǎn)E,測(cè)得點(diǎn)B的俯角為45°,此時(shí)點(diǎn)E離地面高度EF=700米,則隧道BC段的長度約為( )米.(參考數(shù)據(jù):tan12°≈0.2,cos12°≈0.98)
A. 2100 B. 1600 C. 1500 D. 1540
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為大力弘揚(yáng)“奉獻(xiàn)、友愛、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,某中學(xué)利用周末時(shí)間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個(gè)志愿服務(wù)活動(dòng)(每人只參加一個(gè)活動(dòng)),九年級(jí)某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)求該班的人數(shù);
(2)請(qǐng)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中,網(wǎng)絡(luò)文明部分對(duì)應(yīng)的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC交AC的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線.
(2)求DE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com