【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙O的切線.
(2)求DE的長.
【答案】(1)詳見解析;(2)4.
【解析】
試題(1)連結OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過點O作OF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.
試題解析:
(1)連結OD,
∵AD平分∠BAC,
∴∠DAE=∠DAB,
∵OA=OD,
∴∠ODA=∠DAO,
∴∠ODA=∠DAE,
∴OD∥AE,
∵DE⊥AC
∴OE⊥DE
∴DE是⊙O的切線;
(2)過點O作OF⊥AC于點F,
∴AF=CF=3,
∴OF=,
∵∠OFE=∠DEF=∠ODE=90°,
∴四邊形OFED是矩形,
∴DE=OF=4.
科目:初中數學 來源: 題型:
【題目】已知:△ABC內接于⊙O,AB是⊙O的直徑,作EG⊥AB于H,交BC于F,延長GE交直線MC于D,且∠MCA=∠B,求證:
(1)MC是⊙O的切線;
(2)△DCF是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形 ABCD 中,AB=5,AD=3.以點 B 為中心,順時針旋轉矩形 BADC,得到矩形 BEFG,點 A、D、C 的對應點分別為 E、F、G.
(1)如圖1,當點 E 落在 CD 邊上時,求線段 CE 的長;
(2)如圖2,當點 E 落在線段 DF 上時,求證:∠ABD=∠EBD;
(3)在(2)的條件下,CD 與 BE 交于點 H,求線段 DH 的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將含有 30°角的直角三角板 OAB 如圖放置在平面直角坐標系中,OB 在 x軸上,若 OA=2,將三角板繞原點 O 順時針旋轉 75°,則點 A 的對應點 A′ 的坐標為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1,圖2是兩張形狀、大小完全相同的6×6方格紙,方格紙中的每個小長方形的邊長為1,所求的圖形各頂點也在格點上.
(1)在圖1中畫一個以點,為頂點的菱形(不是正方形),并求菱形周長;
(2)在圖2中畫一個以點為所畫的平行四邊形對角線交點,且面積為6,求此平行四邊形周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】方格中單位長度為1的小正方形的頂點叫格點,點和點是格點,位置如圖:
(1)線段的長是______________;
(2)在圖1中確定格點,使為直角三角形,畫出一個這樣的;
(3)在圖2中確定格點,使為等腰三角形,畫出一個這樣的;
(4)在圖2中滿足題(3)條件的格點共有___________個.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數y=kx+b的圖象與反比例函數y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.
(1)求一次函數y=kx+b的關系式;
(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;
(3)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,以△AOB 的頂點 O 為圓心,OB 為半徑作⊙O,交 OA 于點 E,交 AB 于點 D,連接 DE,DE∥OB,延長 AO 交⊙O 于點 C,連接 CB.
(1)求證:;
(2)若 AD=4,AE=CE,求 OC 的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著車輛的增加,交通違規(guī)的現(xiàn)象越來越嚴重,交警對某雷達測速區(qū)檢測到的一組汽車的時速數據進行整理,得到其頻數及頻率如表(未完成):
數據段 | 頻數 | 頻率 |
30~40 | 10 | 0.05 |
40~50 | 36 | |
50~60 | 0.39 | |
60~70 | ||
70~80 | 20 | 0.10 |
總計 | 200 | 1 |
注:30~40為時速大于等于30千米而小于40千米,其他類同
(1)請你把表中的數據填寫完整;
(2)補全頻數分布直方圖;
(3)如果汽車時速不低于60千米即為違章,則違章車輛共有多少輛?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com