【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=k1x+b交x軸于點(diǎn)A(-3,0),交y軸于點(diǎn)B(0,2),并與的圖象在第一象限交于點(diǎn)C,CD⊥x軸,垂足為D,OB是△ACD的中位線.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)若點(diǎn)C'是點(diǎn)C關(guān)于y軸的對(duì)稱(chēng)點(diǎn),請(qǐng)求出△ABC'的面積.
【答案】(1)一次函數(shù)的解析式為,反比例函數(shù)為;(2)6
【解析】
(1)由直線y=k1x+b交x軸于點(diǎn)A(-3,0),交y軸于點(diǎn)B(0,2),用待定系數(shù)法即可求得一次函數(shù)的解析式;由OB是△ACD的中位線可得點(diǎn)C坐標(biāo),代入,即可求得反比例函數(shù)的解析式.
(2)由點(diǎn)是點(diǎn)C(3,4)關(guān)于y軸的對(duì)稱(chēng)點(diǎn),根據(jù)關(guān)于y軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)特征是縱坐標(biāo)不變,橫坐標(biāo)互為相反數(shù),得(-3,4),知,從而由求解.
解:(1)∵直線y=k1x+b交x軸于點(diǎn)A(-3,0),交y軸于點(diǎn)B(0,2),
∴,解得.
∴一次函數(shù)的解析式為.
∵OB是△ACD的中位線,OA=3,OB=2,∴OD=3,DC=4.
∴C(3,4).
∵點(diǎn)C在雙曲線上,∴.
∴反比例函數(shù)的解析式為.
(2)∵點(diǎn)是點(diǎn)C(3,4)關(guān)于y軸的對(duì)稱(chēng)點(diǎn),∴(-3,4).
∴.∴△的面積等于梯形減△.
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC=6,E為AC邊上的點(diǎn)且AE=2EC,點(diǎn)D在BC邊上且滿(mǎn)足BD=DE,設(shè)BD=y,S△ABC=x,則y與x的函數(shù)關(guān)系式為( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y1=2x+2交x軸、y軸于點(diǎn)A、C,直線交x軸、y軸于點(diǎn)B、C,點(diǎn)P(m,1)是△ABC內(nèi)部(包括邊上)的一點(diǎn),則m的最大值與最小值之差為( )
A.2B.2.5C.3D.3.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,直線與軸相交于點(diǎn),與軸交于點(diǎn).拋物線經(jīng)過(guò)點(diǎn)和點(diǎn),并與軸相交于另一點(diǎn),對(duì)稱(chēng)軸與軸相交于點(diǎn).
(1)求拋物線的表達(dá)式;
(2)求證:;
(3)如果點(diǎn)在線段上,且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在矩形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,過(guò)點(diǎn)C作BD的平行線,過(guò)點(diǎn)D作AC的平行線,兩線交于點(diǎn)P.
①求證:四邊形CODP是菱形.
②若AD=6,AC=10,求四邊形CODP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,y=ax2+bx-2的圖象過(guò)A(1,0),B(-2,0),與y軸交于點(diǎn)C.
(1)求拋物線關(guān)系式及頂點(diǎn)M的坐標(biāo);
(2)若N為線段BM上一點(diǎn),過(guò)N作x軸的垂線,垂足為Q,當(dāng)N在線段BM上運(yùn)動(dòng)(N不與點(diǎn)B、點(diǎn)M重合),設(shè)NQ的長(zhǎng)為t,四邊形NQAC的面積為S,求S與t的關(guān)系式并求出S的最大值;
(3)在拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△PAC為直角三角形?若存在,請(qǐng)直接寫(xiě)出所有符合條件P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線與y軸交于點(diǎn)A,它的頂點(diǎn)為點(diǎn)B.
(1)點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為______(用m表示);
(2)已知點(diǎn)M(-6,4),點(diǎn)N(3,4),若拋物線與線段MN恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點(diǎn)A,與函數(shù)(x>0)的圖象相交于點(diǎn)B(t,1).
(1)求點(diǎn)B的坐標(biāo)及一次函數(shù)的解析式;
(2)點(diǎn)P的坐標(biāo)為(m,m)(m>0),過(guò)P作PE∥x軸,交直線AB于點(diǎn)E,作PF∥y軸,交函數(shù)(x>0)的圖象于點(diǎn)F.
①若m=2,比較線段PE,PF的大。
②直接寫(xiě)出使PE≤PF的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)在以線段為直徑的圓上,且,點(diǎn)在上,且于點(diǎn),是線段的中點(diǎn),連接、.
(1)若,,求的長(zhǎng);
(2)求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com