【題目】如圖,AB是⊙O的直徑,⊙O過AC的中點D,DE切⊙O于點D,交BC于E.
(1)求證DE⊥BC;
(2)若⊙O的半徑為5,BE=2,求DE的長度.
【答案】(1)證明見解析;(2)DE=4
【解析】
(1)連接OD ,DE是切線,則OD⊥DE,則OD是△ABC的中位線,可得OD∥BC,據(jù)此即可求證;
(2)過B作OD的垂線,垂足為F,證明四邊形DFBE為矩形,Rt△OFB中用勾股定理即可求得DE的長度.
證明(1)連接OD
∵DE切⊙O于點D
∴OD⊥DE
∴∠ODE=90°
∵D是AC的中點,O是AB的中點
∴OD是△ABCD的中位線
∴OD∥BC
∴∠DEC=90°
∴DE⊥BC
(2)過B作BF⊥OD
∵BF⊥OD
∴∠DFB=90°
∴∠DFB=∠DEB=∠ODE=90°
∴四邊形DFBE為矩形
∴DF=BE=2
∴OF=OD-DF=5-2=3
∴DE=BF=4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,四邊形ABCO是菱形,點C的坐標(biāo)為(﹣3,4),點A在x軸的正半軸上,O為坐標(biāo)原點,連接OB,拋物線y=ax2+bx+c經(jīng)過C、O、A三點.
(1)直接寫出這條拋物線的解析式;
(2)如圖1,對于所求拋物線對稱軸上的一點E,設(shè)△EBO的面積為S1,菱形ABCO的面積為S2,當(dāng)S1≤S2時,求點E的縱坐標(biāo)n的取值范圍;
(3)如圖2,D(0,﹣)為y軸上一點,連接AD,動點P從點O出發(fā),以個單位/秒的速度沿OB方向運動,1秒后,動點Q從O出發(fā),以2個單位/秒的速度沿折線O﹣A﹣B方向運動,設(shè)點P運動時間為t秒(0<t≤6),是否存在實數(shù)t,使得以P、Q、B為頂點的三角形與△ADO相似?若存在,求出相應(yīng)的t值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A是雙曲線在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線上運動,則k的值為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標(biāo)為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當(dāng)2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某貨船以24海里/時的速度將一批重要物資從A處運往正東方向的M處,在點A處測得某島C在北偏東60°的方向上.該貨船航行30分鐘后到達(dá)B處,此時再測得該島在北偏東30°的方向上,
(1)求B到C的距離;
(2)如果在C島周圍9海里的區(qū)域內(nèi)有暗礁.若繼續(xù)向正東方向航行,該貨船有無觸礁危險?試說明理由(≈1.732).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們在同一坐標(biāo)系中的圖象可以是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸交于另一點B.
(1)求拋物線解析式及B點坐標(biāo);
(2)x2+bx+c≤﹣5x+5的解集是 ;
(3)若點M為拋物線上一動點,連接MA、MB,當(dāng)點M運動到某一位置時,△ABM面積為△ABC的面積的倍,求此時點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知近視眼鏡的度數(shù)y(度)與鏡片焦距x(米)之間成如圖所示的反比例函數(shù)關(guān)系,則眼鏡度數(shù)y與鏡片焦距x之間的函數(shù)解析式為( )
A. y=200x B. y= C. y=100x D. y=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在6×8的網(wǎng)格中,每個小正方形的邊長均為1,點O和△ABC的頂點均為小正方形的頂點.
(1)在圖中△ABC的內(nèi)部作△A′B′C′,使△A′B′C′和△ABC位似,且位似中心為點O,位似比為1:2;
(2)連接(1)中的AA′,則線段AA′的長度是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com