按要求解答

已知:一個(gè)正方體的棱長(zhǎng)是6cm,再做一個(gè)正方體的體積是原正方體的5倍,求所做正方體的棱長(zhǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下列范例,按要求解答問題.
例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+
3
2
=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,整理得4c2+2c-2ab+
5
2
=0.∴ab=2c2+c+
5
4

由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+
5
4
=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+
5
4
≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+
9
4
=0.∴t1=t2=
3
2
,即a=b=
3
2
.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=
1-2c
2
+t,b=
1-2c
2
-t.①
∵a2+b2+6c+
3
2
=0,∴(a+b)2-2ab+6c+
3
2
=0.②
將①代入②,得(1-2c)2-2(
1-2c
2
+t)(
1-2c
2
-t)
+6c+
3
2
=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=
3
2
,b=
3
2
.a(chǎn)=b=
3
2
,c=-1.
以上解法1是構(gòu)造一元二次方程解決問題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=
m
2
+t,y=
m
2
-t.一些問題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問題順利解決.
下面給出兩個(gè)問題,解答其中任意一題:
(1)用另一種方法解答范例中的問題.
(2)選用范例中的一種方法解答下列問題:
已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程mx2+x+1=0,試按要求解答下列問題:
(1)當(dāng)該方程有一根為1時(shí),試確定m的值;
(2)當(dāng)該方程有兩個(gè)不相等的實(shí)數(shù)根時(shí),試確定m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于x的方程mx2+x+1=0,試按要求解答下列問題:
(1)當(dāng)該方程有一根為1時(shí),試確定m的值;
(2)當(dāng)該方程有兩個(gè)不相等的實(shí)數(shù)根時(shí),試確定m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國(guó)中考數(shù)學(xué)試題匯編《有理數(shù)》(05)(解析版) 題型:解答題

(2002•荊門)閱讀下列范例,按要求解答問題.
例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+=0.②
將①代入②,整理得4c2+2c-2ab+=0.∴ab=2c2+c+
由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+=0.∴t1=t2=,即a=b=.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=+t,b=-t.①
∵a2+b2+6c+=0,∴(a+b)2-2ab+6c+=0.②
將①代入②,得(1-2c)2-2+6c+=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=,b=.a(chǎn)=b=,c=-1.
以上解法1是構(gòu)造一元二次方程解決問題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=+t,y=-t.一些問題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問題順利解決.
下面給出兩個(gè)問題,解答其中任意一題:
(1)用另一種方法解答范例中的問題.
(2)選用范例中的一種方法解答下列問題:
已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年湖北省荊門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•荊門)閱讀下列范例,按要求解答問題.
例:已知實(shí)數(shù)a、b、c滿足a+b+2c=1,a2+b2+6c+=0,求a、b、c的值.
解法1:由已知得a+b=1-2c,①(a+b)2-2ab+6c+=0.②
將①代入②,整理得4c2+2c-2ab+=0.∴ab=2c2+c+
由①、③可知,a、b是關(guān)于t的方程t2-(1-2c)t+2c2+c+=0④的兩個(gè)實(shí)數(shù)根.
∴△=(1-2c)2-4(2c2+c+≥0,即(c+1)2≤0.而(c+1)2≥0,∴c+l=0,c=-1,
將c=-1代入④,得t2-3t+=0.∴t1=t2=,即a=b=.∴a=b,c=-1.
解法2∵a+b+2c=1,∴a+b=1-2c、設(shè)a=+t,b=-t.①
∵a2+b2+6c+=0,∴(a+b)2-2ab+6c+=0.②
將①代入②,得(1-2c)2-2+6c+=0.
整理,得t2+(c2+2c+1)=0,即t2+(c+1)2=0.∴t=0,c=-1.
將t、c的值同時(shí)代入①,得a=,b=.a(chǎn)=b=,c=-1.
以上解法1是構(gòu)造一元二次方程解決問題.若兩實(shí)數(shù)x、y滿足x+y=m,xy=n,則x、y是關(guān)于t的一元二次方程t2-mt+n=0的兩個(gè)實(shí)數(shù)根,然后利用判別式求解.
以上解法2是采用均值換元解決問題.若實(shí)數(shù)x、y滿足x+y=m,則可設(shè)x=+t,y=-t.一些問題根據(jù)條件,若合理運(yùn)用這種換元技巧,則能使問題順利解決.
下面給出兩個(gè)問題,解答其中任意一題:
(1)用另一種方法解答范例中的問題.
(2)選用范例中的一種方法解答下列問題:
已知實(shí)數(shù)a、b、c滿足a+b+c=6,a2+b2+c2=12,求證:a=b=c.

查看答案和解析>>

同步練習(xí)冊(cè)答案