【題目】已知在△ABC中,AB=AC在射線AC上取一點D,以D為頂點、DB為一條邊作∠BDF=∠A,點E在AC的延長線上,∠ECF=∠ACB
(1)如圖(1),當點D在邊AC上時,求證:①∠FDC=∠ABD②DB=DF
(2)如圖(2),當點D在AC的延長線上時,請判斷DB與DF是否相等,并說明理由
【答案】(1)①證明見解析;②證明見解析;(2)相等,理由見解析.
【解析】
(1)①利用外角定理及角的和差關系即可證明;
②過點D分別作DM垂直BC于M ,DN垂直CF交FC的延長線于N,先證明△DMC≌△DNC,再證明△DBM≌△DFN,最后利用全等的性質即可得到結果;
(2)過點D分別作DP垂直CF于P ,DQ垂直BC交BC的延長線于Q,先證明△DPC≌△DQC,再證明△DPF≌△DQB,最后利用全等的性質即可得到結果.
(1)證明:①∵∠BDC=∠A+∠ABD,∠BDC=∠BDF+∠FDC,且∠A=∠BDF,
∴∠FDC=∠ABD;
②過點D分別作DM垂直BC于M ,DN垂直CF交FC的延長線于N,
∴∠DMB=∠DMC=90°,∠DNC=∠DNF=90°,
∴∠DMC=∠DNC=90°,
∵∠ECF=∠ACB,∠ECF=∠ACN (對頂角相等),
∴∠ACB=∠ACN,
又∵CD=CD,
∴△DMC≌△DNC (AAS),
∴DM=DN,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABC=∠ECF,
∵∠ECF=∠FDC+∠DFN,∠ABC=∠ABD+∠DBM,
且由①知,∠FDC=∠ABD,
∴∠DBM=∠DFN,
又∵∠DMB=∠DNF=90°,
∴△DBM≌△DFN (AAS),
∴DB=DF;
(2)解:DB=DF,理由如下:
過點D分別作DP垂直CF于P ,DQ垂直BC交BC的延長線于Q,
∴∠DPC=∠DPF=90°,∠DQC=∠DQB=90°,
∴∠DPC=∠DQC=90°,∠DPF=∠DQB=90°,
∵∠ACB=∠DCQ (對頂角相等),∠ACB=∠ECF,
∴∠ECF=∠DCQ,
∵CD=CD,
∴△DPC≌△DQC (AAS),
∴DP=DQ,
∵∠BDE=∠ABD+∠A,∠BDE=∠BDF+∠EDF,且∠BDF=∠A,
∴∠ABD=∠EDF,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABC=∠ECF,
∵∠ABD=∠ABC+∠DBQ,∠EDF=∠ECF+∠DFP,
∴∠DBQ=∠DFP,
∴△DPF≌△DQB (AAS),
∴DB=DF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點O,過點O作DE∥BC,分別交AB、AC于點D、E,AB=10,AC=6,求△ADE的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊,點為射線上一點,延長至點,使得,聯(lián)結并延長交射線于點。
(1)當點在邊上時,如圖1,若,則
(2)當點在邊上時,如圖2,若,則(1)的結論還成立嗎?若成立,請證明;若不成立,寫出與的數(shù)量關系并證明。
(3)當點在邊的延長線上時,則(1)的結論還成立嗎?若成立,請證明;若不成立,寫出與的數(shù)量關系并證明。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象過點A(4,1)與正比例函數(shù)()的圖象相交于點B(,3),與軸相交于點C.
(1)求一次函數(shù)和正比例函數(shù)的表達式;
(2)若點D是點C關于軸的對稱點,且過點D的直線DE∥AC交BO于E,求點E的坐標;
(3)在坐標軸上是否存在一點,使.若存在請求出點的坐標,若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,正方形的中心在原點,且正方形的一組對邊與軸平行.點是反比例幽數(shù)的圖象上與正方形的一個交點,若圖中陰影部分的面積等于,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次蠟燭燃燒實驗中,蠟燭燃燒時剩余部分的高度y(cm)是燃燒時間x(h) 的一次函數(shù).某蠟燭的高度為30cm,燃燒3h后,蠟燭剩余部分的高度為12cm.
(1)求蠟燭燃燒時y(cm)與x(h)之間的函數(shù)表達式;
(2)求出蠟燭從點燃到燃盡所用的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點﹙,﹚,﹙,﹚,交軸于點,交軸于點.
求反比例函數(shù)和一次函數(shù)的表達式;
連接,,求的面積;
根據(jù)圖象寫出使一次函數(shù)的值小于反比例函數(shù)的值的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義感知:我們把頂點關于軸對稱,且交于軸上同一點的兩條拋物線叫做“孿生拋物線”,該點叫“孿生拋物線”的“共點”.如圖所示的拋物線與是一對“孿生拋物線”,其“共點”為點.
初步運用:
判斷下列論斷是否正確?正確的在題后橫線上打“√”,錯誤的則打“”:
①“孿生拋物線”的“共點”不能分布在軸上.________
②“孿生拋物線”與的“共點”坐標為.________
填空:拋物線的“孿生拋物線”的解析式為________.
延伸拓展:在平面直角坐標系中,記“孿生拋物線”的兩頂點分別為,,且,其“共點”與,,三點恰好構成一個面積為的菱形,試求該“孿生拋物線”的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象過點和點,對稱軸為直線.
求該二次函數(shù)的關系式和頂點坐標;
結合圖象,解答下列問題:
①當時,求函數(shù)的取值范圍.
②當時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com