【題目】趙爽(約公元182~250年),我國(guó)歷史上著名的數(shù)學(xué)家與天文學(xué)家,他詳細(xì)解釋了《周髀算經(jīng)》中勾股定理,將勾股定理表述為:勾股各自乘,并之為弦實(shí).開(kāi)方除之,即弦.又給出了新的證明方法趙爽弦圖,巧妙地利用平面解析幾何面積法證明了勾股定理.如圖所示的趙爽弦圖是由四個(gè)全等的直角三角形和中間一個(gè)小正方形拼成的一個(gè)大正方形,如果小正方形的面積為1,直角三角形較長(zhǎng)直角邊長(zhǎng)為4,則大正方形的面積為_____________________

【答案】25

【解析】

觀察圖形可知,小正方形的面積為1,可得出小正方形的邊長(zhǎng)是1,進(jìn)而求出直角三角形較短直角邊長(zhǎng),再利用勾股定理得出大正方形的邊長(zhǎng),進(jìn)而求出答案.

解:∵小正方形的面積為1,∴小正方形的邊長(zhǎng)是1,
∵直角三角形較長(zhǎng)直角邊長(zhǎng)為4,∴直角三角形較短直角邊長(zhǎng)為:4-1=3,

∴大正方形的邊長(zhǎng)為:

∴大正方形的面積為:5=25,

故答案為:25

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算(1

2

3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,過(guò)點(diǎn)D作DE⊥AD交AB于點(diǎn)E,以AE為直徑作⊙O

(1)求證:點(diǎn)D在⊙O上;

(2)求證:BC是⊙O的切線;

(3)若AC=6,BC=8,求BE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖⊙O是以等腰三角形ABC的底邊BC為直徑的外接圓,BD平分∠ABC交⊙O于D,且BD與OA、AC分別交于點(diǎn)E、F延長(zhǎng)BA、CD交于G.

(1)試證明:BF=CG.

(2)線段CD與BF有什么數(shù)量關(guān)系?為什么?

(3)試比較線段CD與BE的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BC=30,高AD=18,作矩形PQRS,使得P,S分別落在AB,AC邊上,QR落在BC邊上.

(1)求證:APS ∽△ABC

(2)如果矩形PQRS是正方形,求它的邊長(zhǎng);

(3)如果APPB=1∶2,求矩形PQRS的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)ykx+b和反比例函數(shù)y圖象相交于A(-4,2),B(n,-4)兩點(diǎn).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求AOB的面積;

(3)觀察圖象,直接寫(xiě)出不等式kxb<0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,ABx軸于A,反比例函數(shù)y=(x0)的圖象經(jīng)過(guò)點(diǎn)C,交AB于點(diǎn)D,已知AB=4,BC=

(1)若OA=4,求k的值.

(2)連接OC,若AD=AC,求CO的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,EBC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F

(1)求證:AB=CF;

(2)當(dāng)BCAF滿足什么數(shù)量關(guān)系時(shí),四邊形ABFC是矩形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線經(jīng)過(guò)點(diǎn)A0),B,0),且與y軸相交于點(diǎn)C

1求這條拋物線的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案