【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)(k>0)的圖像交于A,B兩點,過點A做x軸的垂線,垂足為M,△AOM面積為1.
(1)求反比例函數(shù)的解析式;
(2)在y軸上求一點P,使PA+PB的值最小,并求出其最小值和P點坐標(biāo).
【答案】(1)y=;(2)最小值即為,P(0,).
【解析】
(1)根據(jù)反比例函數(shù)比例系數(shù)的幾何意義得出,進而得到反比例函數(shù)的解析式;
(2)作點關(guān)于軸的對稱點,連接,交軸于點,得到最小時,點的位置,根據(jù)兩點間的距離公式求出最小值的長;利用待定系數(shù)法求出直線的解析式,得到它與軸的交點,即點的坐標(biāo).
(1)反比例函數(shù)的圖象過點,過點作軸的垂線,垂足為,面積為1,
,
,
,
故反比例函數(shù)的解析式為:;
(2)作點關(guān)于軸的對稱點,連接,交軸于點,則最小.
由,解得,或,
,,
,最小值.
設(shè)直線的解析式為,
則,解得,
直線的解析式為,
時,,
點坐標(biāo)為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是圓的兩條弦,于,連接,過點作,垂足為.
(1)如圖1,連接,求證:;
(2)如圖2,連接并延長交于點,若平分,求圓的半徑和的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,直線DE與⊙O相切于點C,過A,B分別作AD⊥DE,BE⊥DE,垂足為點D,E,連接AC,BC,若AD=,CE=3,則的長為( 。
A.B.πC.πD.π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2mx+m+2的圖象與x軸交于A(﹣1,0),B兩點,在x軸上方且平行于x軸的直線EF與拋物線交于E,F兩點,E在F的左側(cè),過E,F分別作x軸的垂線,垂足是M,N.
(1)求m的值及拋物線的頂點坐標(biāo);
(2)設(shè)BN=t,矩形EMNF的周長為C,求C與t的函數(shù)表達式;
(3)當(dāng)矩形EMNF的周長為10時,將△ENM沿EN翻折,點M落在坐標(biāo)平面內(nèi)的點記為M',試判斷點M'是否在拋物線上?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,AD 平分∠BAC 交 BC 于點 D,O 為 AB 上一點,經(jīng)過點 A、D 的⊙O 分別交 AB、AC 于點 E、F,
(1)求證:BC 是⊙O 切線;
(2)設(shè) AB=m,AF=n,試用含 m、n 的代數(shù)式表示線段 AD 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;
(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是實驗室中的一種擺動裝置,BC在地面上,支架ABC是底邊為BC的等腰直角三角形,擺動臂AD可繞點A旋轉(zhuǎn),擺動臂DM可繞點D旋轉(zhuǎn),AD=30,DM=10.
(1)在旋轉(zhuǎn)過程中,
①當(dāng)A,D,M三點在同一直線上時,求AM的長.
②當(dāng)A,D,M三點為同一直角三角形的頂點時,求AM的長.
(2)若擺動臂AD順時針旋轉(zhuǎn)90°,點D的位置由△ABC外的點D1轉(zhuǎn)到其內(nèi)的點D2處,連結(jié)D1D2,如圖2,此時∠AD2C=135°,CD2=60,求BD2的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:把一次函數(shù)y=kx+b的一次項系數(shù)和常數(shù)項互換得y=bx+k,我們稱y=kx+b和y=bx+k(其中k·b≠0,且|k|≠|(zhì)b|))為互助一次函數(shù),例如:y=-2x+3和y=3x-2就是互助一次函數(shù).如圖1所示,一次函數(shù)y=kx+b和它的互助一次函數(shù)的圖象1,2交于點P,1,2與x軸、y軸分別交于點A,B和點C,D.
(1)如圖1所示,當(dāng)k=-1,b=5時,直接寫出點P的坐標(biāo)是_________.
(2)如圖2所示,已知點M(-1,1.5),N(-2,0).試探究隨著k,b值的變化,MP+NP的值是否發(fā)生變化,若不變,求出MP+NP的值;若變化,求出使MP+NP取最小值時點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com