【題目】如圖所示,在邊長為6的正方形ABCD外以CD為底邊作等腰直角△CDE,連接BE,交CD于點(diǎn)F,則CF=___________.
【答案】2
【解析】
作EG⊥BC于G,如圖,設(shè)DE=CE=a,根據(jù)等腰直角三角形的性質(zhì)得CD= ∠DCE=45°,再利用正方形的性質(zhì)得CB=CD=,∠BCD=90°,接著判斷△CEG為等腰直角三角形得到CG=EG= ,然后在Rt△BEG中根據(jù)正切的定義求解,從而可得答案.
解:作EG⊥BC于G,如圖,設(shè)DE=CE=a,
∵△CDE是以CD為底邊的等腰直角三角形,
∴CD= ∠DCE=45°,
∵四邊形ABCD為正方形,
∴CB=CD=a,∠BCD=90°,
∴∠ECG=45°,
∴△CEG為等腰直角三角形,
∴CG=EG= ,
在Rt△BEG中,tan∠EBG=
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備進(jìn)一批季節(jié)性小家電,每個(gè)進(jìn)價(jià)為40元,經(jīng)市場預(yù)測,銷售定價(jià)為50元,可售出400個(gè);定價(jià)每增加1元,銷售量將減少10個(gè).設(shè)每個(gè)定價(jià)增加x元.
(1)寫出售出一個(gè)可獲得的利潤是多少元(用含x的代數(shù)式表示)?
(2)商店若準(zhǔn)備獲得利潤6000元,并且使進(jìn)貨量較少,則每個(gè)定價(jià)為多少元?應(yīng)進(jìn)貨多少個(gè)?
(3)商店若要獲得最大利潤,則每個(gè)應(yīng)定價(jià)多少元?獲得的最大利潤是多少?
【答案】(1)x+10元;(2)每個(gè)定價(jià)為70元,應(yīng)進(jìn)貨200個(gè).(3)每個(gè)定價(jià)為65元時(shí)得最大利潤,可獲得的最大利潤是6250元.
【解析】試題分析:(1)根據(jù)利潤=銷售價(jià)-進(jìn)價(jià)列關(guān)系式,(2)總利潤=每個(gè)的利潤×銷售量,銷售量為400-10x,列方程求解,根據(jù)題意取舍,(3)利用函數(shù)的性質(zhì)求最值.
試題解析:由題意得:(1)50+x-40=x+10(元),
(2)設(shè)每個(gè)定價(jià)增加x元,
列出方程為:(x+10)(400-10x)=6000,解得:x1=10,x2=20,要使進(jìn)貨量較少,則每個(gè)定價(jià)為70元,應(yīng)進(jìn)貨200個(gè),
(3)設(shè)每個(gè)定價(jià)增加x元,獲得利潤為y元,
y=(x+10)(400-10x)=-10x2+300x+4000=-10(x-15)2+6250,當(dāng)x=15時(shí),y有最大值為6250,所以每個(gè)定價(jià)為65元時(shí)得最大利潤,可獲得的最大利潤是6250元.
【題型】解答題
【結(jié)束】
24
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點(diǎn)在一條直線上,CE在邊CD上,連接AF,若M為AF的中點(diǎn),連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點(diǎn)F在邊CD上,點(diǎn)M仍為AF的中點(diǎn),試證明(1)中的結(jié)論仍然成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形ABCD中,E是BC的中點(diǎn),F是CD上一點(diǎn),AE⊥EF,下列結(jié)論:①∠BAE=30°;②△ABE∽△AEF;③CD=3CF;④S△ABE=4S△ECF.其中正確的有_____(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn).直線經(jīng)過點(diǎn)、.
(1)求拋物線的解析式;
(2)是拋物線上一動點(diǎn),過作軸交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
①若以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,求的值.
②當(dāng)射線、、中一條射線平分另外兩條射線的夾角時(shí),直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在Rt△ABC中,∠B=90°,∠ACB=30°,點(diǎn)D為BC邊上一動點(diǎn),以AD為邊,在AD的右側(cè)作等邊三角形ADE.
(1)當(dāng)AD平分∠BAC時(shí),如圖1,四邊形ADCE是 形;
(2)過E作EF⊥AC于F,如圖2,求證:F為AC的中點(diǎn);
(3)若AB=2,
①當(dāng)D為BC的中點(diǎn)時(shí),過點(diǎn)E作EG⊥BC于G,如圖3,求EG的長;
②點(diǎn)D從B點(diǎn)運(yùn)動到C點(diǎn),則點(diǎn)E所經(jīng)過路徑長為 .(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點(diǎn)E,點(diǎn)G為AD的中點(diǎn),連接CG,CG的延長線交BA的延長線于點(diǎn)F,連接FD.
(1)求證:AB=AF;
(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱AC的高為11米,燈桿AB與燈柱AC的夾角∠A=120°,路燈采用錐形燈罩,在地面上的照射區(qū)域DE長為18米,從D,E兩處測得路燈B的仰角分別為α和β,且tanα=6,tanβ=,求燈桿AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=6,點(diǎn)E為AD的中點(diǎn),點(diǎn)P為線段AB上一個(gè)動點(diǎn),連接EP,將△APE沿EP折疊得到△EPF,連接CE,CF,當(dāng)△ECF為直角三角形時(shí),AP的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com