【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點為A(3,0),與y軸的交點為B(0,3),其頂點為C,對稱軸為x=1.
(1)求拋物線的解析式;
(2)已知點M為y軸上的一個動點,當(dāng)△ABM為等腰三角形時,求點M的坐標(biāo).
【答案】
(1)解:由題意得:
,
解該方程組得:a=﹣1,b=2,c=3,
∴拋物線的解析式為y=﹣x2+2x+3
(2)解:由題意得:OA=3,OB=3;
由勾股定理得:AB2=32+32,
∴AB=3 .
當(dāng)△ABM為等腰三角形時,
①若AB為底,
∵OA=OB,
∴此時點O即為所求的點M,
故點M的坐標(biāo)為M(0,0);
②若AB為腰,
以點B為圓心,以3 長為半徑畫弧,交y軸于兩點,
此時兩點坐標(biāo)為M(0,3﹣3 )或M(0,3+3 ),
以點A為圓心,以3 長為半徑畫弧,交y軸于點(0,﹣3);
綜上所述,當(dāng)△ABM為等腰三角形時,點M的坐標(biāo)分別為
(0,0)、(0,3﹣3 )、(0,3 +3)、(0,﹣3).
【解析】(1)直接根據(jù)題意列出關(guān)于a、b、c的方程組,解方程組即可解決問題.(2)運用分類討論的數(shù)學(xué)思想,根據(jù)等腰三角形的定義,分類討論,數(shù)形結(jié)合,即可解決問題.
【考點精析】根據(jù)題目的已知條件,利用拋物線與坐標(biāo)軸的交點的相關(guān)知識可以得到問題的答案,需要掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A為某旅游景區(qū)的最佳觀景點,游客可從B處乘坐纜車先到達(dá)小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達(dá)A處,返程時從A處乘坐升降電梯直接到達(dá)C處,已知:AC⊥BC于C,DE∥BC,AC=200.4米,BD=100米,∠α=30°,∠β=70°,則AE的長度約為米.(參考數(shù)據(jù):sin70≈0.94,cos70°≈0.34,tan70°≈2.25).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD、BC是⊙O的兩條互相垂直的直徑,點P從點O出發(fā),沿O→C→D→O的路線勻速運動.設(shè)∠APB=y(單位:度),那么y與點P運動的時間x(單位:秒)的關(guān)系圖是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H.給出下列結(jié)論:
①△ABE≌△DCF;② ;③DP2=PHPB;④ .
其中正確的是 . (寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,BC=1,動點P從點B出發(fā),沿路線B→C→D作勻速運動,那么△ABP的面積y與點P運動的路程x之間的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明有一個呈等腰直角三角形的積木盒,現(xiàn)在積木盒中只剩下如圖1所示的九個空格,圖2是可供選擇的A,B,C,D四塊積木.
(1)小明選擇把積木A和B放入圖3,要求積木A和B的九個小圓恰好能分別與圖3中的九個小圓重合,請在圖3中畫出他放入方式的示意圖(溫馨提醒:積木A和B的連接小圓的小線段還是要畫上哦。;
(2)現(xiàn)從A、B、C、D四塊積木中任選兩塊,請用列表法或畫樹狀圖法求恰好能全部不重疊放入的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的已知、求證,并完成證明過程.
命題:如果一個三角形的兩條邊相等,那么兩條邊所對的角也相等(簡稱:“等邊對等角”.)
(1)已知: .
求證: .
(2)證明:“等邊對等角”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com