如圖,在Rt△ABC中,∠C=90°,AC=,BC=1,D在AC上,將△ADB沿直線BD翻折后,點A落在點E處,如果AD⊥ED,那么△ABE的面積是( 。

 

A.

1

B.

C.

D.

考點:

翻折變換(折疊問題).

分析:

先根據(jù)勾股定理計算出AB=2,根據(jù)含30度的直角三角形三邊的關系得到∠BAC=30°,在根據(jù)折疊的性質得BE=BA=2,∠BED=∠BAD=30°,DA=DE,由于AD⊥ED得BC∥DE,所以∠CBF=∠BED=30°,在Rt△BCF中可計算出CF=,BF=2CF=,則EF=2﹣,在Rt△DEF中計算出FD=1﹣,ED=﹣1,然后利用S△ABE=S△ABD+S△BED+S△ADE=2S△ABD+S△ADE計算即可.

解答:

解:∵∠C=90°,AC=,BC=1,

∴AB==2,

∴∠BAC=30°,

∵△ADB沿直線BD翻折后,點A落在點E處,

∴BE=BA=2,∠BED=∠BAD=30°,DA=DE,

∵AD⊥ED,

∴BC∥DE,

∴∠CBF=∠BED=30°,

在Rt△BCF中,CF==,BF=2CF=,

∴EF=2﹣,

在Rt△DEF中,F(xiàn)D=EF=1﹣,ED=FD=﹣1,

∴S△ABE=S△ABD+S△BED+S△ADE

=2S△ABD+S△ADE

=2×BC•AD+AD•ED

=2××1×(﹣1)+×(﹣1)(﹣1)

=1.

故選A.

點評:

本題考查了折疊問題:折疊前后兩圖形全等,即對應線段相等;對應角相等.也考查了勾股定理和含30度的直角三角形三邊的關系.

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案