如圖,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分別交CE,AE于點G、H試猜測線段AE和BD數(shù)量關(guān)系,并說明理由
AE=BD,AE⊥BD
【解析】
試題分析:由于條件可知CD=AC,BC=CE,且可求得∠ACE=∠DCB,所以△ACE≌△DCB,即AE=BD,∠CAE=∠CDB;又因為對頂角相∠AFC=∠DFH,所以∠DHF=∠ACD=90°,即AE⊥BD
試題解析:猜測AE=BD,AE⊥BD;
理由如下:
∵∠ACD=∠BCE=90°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠DCB,
又∵△ACD和△BCE都是等腰直角三角形,
∴AC=CD,CE=CB,(4分)
∵在△ACE與△DCB中,
AC=DC
∠ACE=∠DCB
EC=BC
∴△ACE≌△DCB(SAS),
∴AE=BD,(6分)∠CAE=∠CDB;
∵∠AFC=∠DFH,∠FAC+∠AFC=90°,
∴∠DHF=∠ACD=90°,
∴AE⊥BD
故線段AE和BD的數(shù)量相等,位置是垂直關(guān)系
考點:1 全等三角形的判定;2 等腰直角三角形的性質(zhì)
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com