分析 根據(jù)折疊的性質(zhì)得到∠MAD=∠DAC=$\frac{1}{2}$∠MAC,∠CAB=∠NAB=$\frac{1}{2}$∠CAN,∠DCA=∠MCD=$\frac{1}{2}$∠ACM,∠ACB=∠NCB=$\frac{1}{2}$∠ACN,再根據(jù)正方形的性質(zhì)得∠MAC=∠∠MCA=∠NAC=∠NCA,所以∠DAC=∠BAC=∠BCA=∠DCA,于是可判斷四邊形ABCD為平行四邊形,且DA=DC,然后根據(jù)菱形的判定方法得到四邊形ABCD為菱形.
解答 解:∵△AMG沿AG折疊,使AM落在AC上,
∴∠MAD=∠DAC=$\frac{1}{2}$∠MAC,
同理可得∠CAB=∠NAB=$\frac{1}{2}$∠CAN,∠DCA=∠MCD=$\frac{1}{2}$∠ACM,∠ACB=∠NCB=$\frac{1}{2}$∠ACN,
∵四邊形AMCN是正方形,
∴∠MAC=∠MCA=∠NAC=∠NCA,
∴∠DAC=∠BAC=∠BCA=∠DCA
∴AD∥BC,AB∥DC,
∴四邊形ABCD為平行四邊形,
∵∠DAC=∠DCA,
∴AD=CD,
∴四邊形ABCD為菱形.
點(diǎn)評(píng) 本題考查了折疊的性質(zhì):折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和對(duì)應(yīng)角相等.也考查了菱形的判定方法以及正方形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 甲組加工零件數(shù)量y與時(shí)間x的關(guān)系式為y甲=40x | |
B. | 乙組加工零件總量m=280 | |
C. | 經(jīng)過(guò)2$\frac{1}{2}$小時(shí)恰好裝滿(mǎn)第1箱 | |
D. | 經(jīng)過(guò)4$\frac{3}{4}$小時(shí)恰好裝滿(mǎn)第2箱 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等于零 | B. | 等于1 | C. | 等于-1 | D. | 沒(méi)有意義 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\sqrt{3}$×4n,4n) | B. | ($\sqrt{3}$×4n-1,4n-1) | C. | ($\sqrt{3}$×4n-1,4n) | D. | ($\sqrt{3}$×4n,4n-1) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com