【題目】中華文化,源遠(yuǎn)流長,在文學(xué)方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”,某中學(xué)為了了解學(xué)生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題做法全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制城如圖所示的兩個不完整的統(tǒng)計圖,請結(jié)合圖中信息解決下列問題:

(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是 部,中位數(shù)是 部,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為 度.

(2)請將條形統(tǒng)計圖補(bǔ)充完整;

(3)沒有讀過四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來閱讀,則他們選中同一名著的概率為

【答案】(1)1,2,126;(2)作圖見解析;(3)

【解析】

試題分析:(1)先根據(jù)調(diào)查的總?cè)藬?shù),求得1部對應(yīng)的人數(shù),進(jìn)而得到本次調(diào)查所得數(shù)據(jù)的眾數(shù)以及中位數(shù),根據(jù)扇形圓心角的度數(shù)=部分占總體的百分比×360°,即可得到“1部”所在扇形的圓心角;

(2)根據(jù)1部對應(yīng)的人數(shù)為40﹣2﹣10﹣8﹣6=14,即可將條形統(tǒng)計圖補(bǔ)充完整;

(3)根據(jù)樹狀圖所得的結(jié)果,判斷他們選中同一名著的概率.

試題解析:(1)調(diào)查的總?cè)藬?shù)為:10÷25%=40,1部對應(yīng)的人數(shù)為40﹣2﹣10﹣8﹣6=14,本次調(diào)查所得數(shù)據(jù)的眾數(shù)是1部,2+14+10=2621,2+1420,中位數(shù)為2部,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為:×360°=126°;

故答案為:1,2,126;

(2)條形統(tǒng)計圖如圖所示

(3)將《西游記》、《三國演義》、《水滸傳》、《紅樓夢》分別記作A,B,C,D,畫樹狀圖可得:

共有16種等可能的結(jié)果,其中選中同一名著的有4種,故P(兩人選中同一名著)==.故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列等式:12=1,1+3=22 , 1+3+5=32 , 1+3+5+7=42 , …,則1+3+5+7+…+2015=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在,斜邊兩個端點分別在相互垂直的射線上滑動,下列結(jié)論:

兩點關(guān)于對稱,

兩點距離的最大值為;

平分;

斜邊的中點運動路徑的長為.

其中正確的是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:

數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點是直線上的一點,若在上存在一點,使得智慧三角形,當(dāng)其面積取得最小值時,直接寫出此時點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD的對角線AC,BD相交于點O,E,F(xiàn)分別是AD,CD邊上的中點,連接EF.若EF= ,BD=2,則菱形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCD的對角線長為8cm,E、F、G、H分別是AB、BC、CD、DA的中點,則四邊形EFGH的周長等于cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知一次函數(shù)y=﹣2x+1,若﹣1x2,則y的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果x=1是方程3x﹣m﹣1=0的解,那么m的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把點A(2,3)向左平移一個單位得到點A′,則點A′的坐標(biāo)為

查看答案和解析>>

同步練習(xí)冊答案