(2006•汾陽市)有一塊表面是咖啡色、內部是白色、形狀是正方體的烤面包.小明用刀在它的上表面、前面面和右側表面沿虛線各切兩刀(如圖1),將它切成若干塊小正方體形面包(如圖2).
(1)小明從若干塊小面包中任取一塊,求該塊面包有且只有兩個面是咖啡色的概率;
(2)小明和弟弟邊吃邊玩.游戲規(guī)則是:從中任取一塊小面包,若它有奇數(shù)個面為咖啡色時,小明贏;否則,弟弟贏.你認為這樣的游戲規(guī)則公平嗎?為什么?如果不公平,請你修改游戲規(guī)則,使之公平.

【答案】分析:游戲是否公平,關鍵要看游戲雙方獲勝的機會是否相等,即判斷雙方取勝的概率是否相等,或轉化為在總情況明確的情況下,判斷雙方取勝所包含的情況數(shù)目是否相等.
解答:解:(1)按上述方法可將面包切成27塊小面包,有且只有兩個面是咖啡色的小面包有12塊,
所以,所求概率是.(4分)

(2)27塊小面包中有8塊是有且只有3個面是咖啡色,6塊是有且只有1個面是咖啡色.
從中任取一塊小面包,有且只有奇數(shù)個面為咖啡色的共有14塊,剩余的面包塊共有13塊.
小明贏的概率是,弟弟贏的概率是.(7分)
所以,按照上述規(guī)則弟弟贏的概率小于小明贏的概率,游戲不公平.(8分)
游戲規(guī)則修改舉例:任取一塊小面包,恰有奇數(shù)個面為咖啡色時,哥哥得13分;恰有偶數(shù)個面為咖啡色時,弟弟得14分.積分多者獲勝.(10分)
評分說明:不要求學生嚴格按上述步驟說理.修改的游戲規(guī)則只要正確即可.
點評:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個人取勝的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關于原點對稱的拋物線C2的解析式;
(2)設拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山西省中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關于原點對稱的拋物線C2的解析式;
(2)設拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年山西省呂梁中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關于原點對稱的拋物線C2的解析式;
(2)設拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(04)(解析版) 題型:填空題

(2006•汾陽市)甲、乙兩人進行羽毛球比賽,甲發(fā)出一顆十分關鍵的球,出手點為P,羽毛球飛行的水平距離s(米)與其距地面高度h(米)之間的關系式為h=-s2+s+.如圖,已知球網(wǎng)AB距原點5米,乙(用線段CD表示)扣球的最大高度為米,設乙的起跳點C的橫坐標為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導致接球失敗,則m的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《函數(shù)基礎知識》(02)(解析版) 題型:選擇題

(2006•汾陽市)如圖,是某函數(shù)的圖象,則下列結論中正確的是( )

A.當y=1時,x的取值是
B.當y=-3時,x的近似值是0,2
C.當時,函數(shù)值y最大
D.當x>-3時,y隨x的增大而增大

查看答案和解析>>

同步練習冊答案