精英家教網 > 初中數學 > 題目詳情
(2013•宜賓)如圖,△ABC是正三角形,曲線CDEF叫做正三角形的漸開線,其中弧CD、弧DE、弧EF的圓心依次是A、B、C,如果AB=1,那么曲線CDEF的長是
分析:弧CD,弧DE,弧EF的圓心角都是120度,半徑分別是1,2,3,利用弧長的計算公式可以求得三條弧長,三條弧的和就是所求曲線的長.
解答:解:弧CD的長是
120π×1
180
=
3

弧DE的長是:
120π×2
180
=
3
,
弧EF的長是:
120π×3
180
=2π,
則曲線CDEF的長是:
3
+
3
+2π=4π.
故答案是:4π.
點評:本題考查了弧長的計算公式,理解弧CD,弧DE,弧EF的圓心角都是120度,半徑分別是1,2,3是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•宜賓)如圖,一個含有30°角的直角三角形的兩個頂點放在一個矩形的對邊上,若∠1=25°,則∠2=
115°
115°

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•宜賓)如圖,在△ABC中,∠ABC=90°,BD為AC的中線,過點C作CE⊥BD于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取FG=BD,連接BG、DF.若AG=13,CF=6,則四邊形BDFG的周長為
20
20

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•宜賓)如圖,AB是⊙O的直徑,弦CD⊥AB于點G,點F是CD上一點,且滿足
CF
FD
=
1
3
,連接AF并延長交⊙O于點E,連接AD、DE,若CF=2,AF=3.給出下列結論:
①△ADF∽△AED;②FG=2;③tan∠E=
5
2
;④S△DEF=4
5

其中正確的是
①②④
①②④
(寫出所有正確結論的序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•宜賓)如圖,AB是⊙O的直徑,∠B=∠CAD.
(1)求證:AC是⊙O的切線;
(2)若點E是
BD
的中點,連接AE交BC于點F,當BD=5,CD=4時,求AF的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•宜賓)如圖,拋物線y1=x2-1交x軸的正半軸于點A,交y軸于點B,將此拋物線向右平移4個單位得拋物線y2,兩條拋物線相交于點C.
(1)請直接寫出拋物線y2的解析式;
(2)若點P是x軸上一動點,且滿足∠CPA=∠OBA,求出所有滿足條件的P點坐標;
(3)在第四象限內拋物線y2上,是否存在點Q,使得△QOC中OC邊上的高h有最大值?若存在,請求出點Q的坐標及h的最大值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案