【題目】如圖,一次函數(shù)y=kx+b(k≠0)和反比例函數(shù)y=(m≠0)交于點A(4,1)與點B(﹣1,n).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.
【答案】(1)y=,y=x﹣3;(2);(3)﹣1<x<0或x>4.
【解析】
(1)把點A(4,1)代入反比例函數(shù)y=得到m=4,即反比例函數(shù)的解析式為y=,然后求出B(﹣1,﹣4),再把點A(4,1)與點B(﹣1,﹣4)代入一次函數(shù)y=kx+b求出k和b即可;
(2)求出點C坐標,然后根據(jù)三角形的面積公式即可得到結(jié)論;
(3)觀察函數(shù)圖象,找出一次函數(shù)圖象在反比例函數(shù)圖象上方時對應的x的取值范圍即可.
解:(1)∵點A(4,1)在反比例函數(shù)y=(m≠0)的圖像上,
∴m=4,即反比例函數(shù)的解析式為y=,
當x=﹣1時,n=﹣4,即B(﹣1,﹣4),
∵點A(4,1)與點B(﹣1,﹣4)在一次函數(shù)y=kx+b(k≠0)的圖象上,
∴,解得:
∴一次函數(shù)解析式為y=x﹣3;
(2)對于y=x﹣3,當y=0時,x=3,
∴C(3,0)
∴S△AOB=S△AOC+S△BOC=;
(3)由圖象可得,當﹣1<x<0或x>4時,一次函數(shù)的值大于反例函數(shù)的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BC=CD,∠C=2∠BAD.
(1)求∠BOD的度數(shù);
(2)求證:四邊形OBCD是菱形;
(3)若⊙O的半徑為r,∠ODA=45°,求△ABD的面積(用含r的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
如圖①,在四邊形ABCD的邊AB上任取一點E(點E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點”;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強相似點”.解決問題:
(1)如圖①,∠A=∠B=∠DEC=45°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖②,在矩形ABCD中,A、B、C、D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖②中畫出矩形ABCD的邊AB上的強相似點;
(3)如圖③,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試確定E點位置.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,點D是邊AC的中點,點E,F在邊AB上,當△DEF是等腰三角形,且底角的正切值是時,△DEF腰長的值是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx﹣3交x軸于點A(﹣1,0)和點B(3,0),與y軸交于點C,頂點是D,對稱軸交x軸于點E.
(1)求拋物線的解析式;
(2)點P是拋物線在第四象限內(nèi)的一點,過點P作PQ∥y軸,交直線AC于點Q,設(shè)點P的橫坐標是m.
①求線段PQ的長度n關(guān)于m的函數(shù)關(guān)系式;
②連接AP,CP,求當△ACP面積為時點P的坐標;
(3)若點N是拋物線對稱軸上一點,則拋物線上是否存在點M,使得以點B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出線段BN的長度;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】周老師為了了解學生自主學習、合作交流的具體情況,對本班部分學生進行了為期半年的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類A:優(yōu);B:良;C:中;D:差.依據(jù)調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,周老師一共調(diào)查了______名學生;
(2)將統(tǒng)計圖補充完整;
(3)為了共同進步,周老師想從被調(diào)查的A類和D類學生中分別選取一位同學進行“一對一”幫扶,請用列表法或畫樹形圖的方法求所選的兩位同學恰好是兩位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.
(1)請問1輛甲種客車與1輛乙種客車的載客量分別為多少人?
(2)某學校組織240名師生集體外出活動,擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點.若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請給出最節(jié)省費用的租車方案,并求出最低費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國魏晉時期的數(shù)學家劉徽(263年左右)首創(chuàng)“割圓術(shù)”,所謂“割圓術(shù)”就是利用圓內(nèi)接正多邊形無限逼近圓來確定圓周率,劉徽計算出圓周率.
劉徽從正六邊形開始分割圓,每次邊數(shù)成倍增加,依次可得圓內(nèi)接正十二邊形,圓內(nèi)接正二十四邊形,…,割的越細,圓的內(nèi)接正多邊形就越接近圓.設(shè)圓的半徑為R,圓內(nèi)接正六邊形的周長,計算;圓內(nèi)接正十二邊形的周長,計算;請寫出圓內(nèi)接正二十四邊形的周長________,計算________.(參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年9月10日是我國第35個教師節(jié),某中學德育處發(fā)起了感恩小學恩師的活動,德育處要求每位同學從以下三種方式中選擇一種方式表達感恩:A.信件感恩,B.信息感恩,C.當面感恩.為了解同學們選擇以上三種感恩方式的情況,德育處隨機對本校部分學生進行了調(diào)查,井根據(jù)調(diào)查結(jié)果繪制成了如下兩幅不完整的統(tǒng)計圖.
根據(jù)圖中信息,解答下列問題:
(1)扇形統(tǒng)計圖中C部分所對應的扇形圓心角的度數(shù)為________,并補全條形統(tǒng)計圖;
(2)本次調(diào)查在選擇A方式的學生中有兩名男生和兩名女生來自于同一所小學,德育處打算從他們四個人中選擇兩位在主題升旗儀式上發(fā)言,請用畫樹狀圖或列表的方法求恰好選到一男一女的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com