如圖,某公園的一座石拱橋是圓弧形(劣弧),其跨度為24米,拱的半徑為13米,則拱高為( )
A.5米 | B.5米 | C.7米 | D.8米 |
因為跨度AB=24m,拱所在圓半徑為13m,
所以找出圓心O并連接OA,延長CD到O,構成直角三角形,
利用勾股定理和垂徑定理求出DO=5,
進而得拱高CD=CO-DO=13-5=8.故選D.
練習冊系列答案
相關習題
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,在△ABC中,∠BAC=90°,以AB為直徑的⊙O交BC于點D,E是AC的中點,判斷直線DE與⊙O的位置關系,并說明理由(10分)
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,△OAC中,以O為圓心,OA為半徑作⊙O,作OB⊥OC交⊙O于B,垂足為O,連接AB交OC于點D,∠CAD=∠CDA.
(1)判斷AC與⊙O的位置關系,并證明你的結論;
(2)若OA=5,OD=1,求線段AC的長.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:解答題
如圖,AB是⊙O的直徑,AC和BD是它的兩條切線,CO平分∠ACD.
(1)求證:CD是⊙O的切線;(2)若AC=2,BC=3,求AB的長.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
如圖,D是弧 AC的中點,則圖中與∠ABD(不包括∠ABD)相等的角的個數(shù)有( )
A.1個 B. 2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
已知⊙O
1與⊙O
2的半徑分別為4和6,O
1O
2=2,則⊙O
1與⊙O
2的位置關系是【 】
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:單選題
在△ABC中,AD是BC邊上的高,且
,E、F分別是AB、AC的中點,以EF為直徑的圓與BC位置關系是( )
A. 相離 B. 相切; C. 相交; D. 相切或相交.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖,在以O為圓心的兩個同心圓中,大圓的弦AB與小圓相切于點C,若AB的長為8cm,則圖中陰影部分的面積為
▲ cm
2.
查看答案和解析>>
科目:初中數(shù)學
來源:不詳
題型:填空題
如圖,Rt△ABC中,∠ACB=90°,∠B=30°,AB=12cm,以AC為直徑的半圓O交AB于點D,點E是AB的中點,CE交半圓O于點F,則圖中陰影部分的面積為
cm
2.
查看答案和解析>>