已知:如圖,□ABCD中,∠ABC的平分線交AD于E,
∠CDA的平分線交BC于F.
(1)求證:△ABE≌△CDF;(2)連接EF、BD,求證:EF與BD互相平分.
(1)通過角邊角證明△ABE≌△CDF;(2)證明四邊形BFDE是平行四邊形∴EF與BD互相平分.
解析試題分析:(1)證明:∵ 四邊形ABCD是平行四邊形,
∴ AB=CD;
∠A=∠C,∠ABC=∠CDA.
∵BE平分∠ABC,DF平分∠CDA,
∴∠ABE=∠ABC,∠CDF=∠CDA.
∴∠ABE=∠CDF.
∴△ABE≌△CDF.
(2)證明:∵△ABE≌△CDF,
∴AE=CF 又AD=BC.
∴DE=BF且DE∥BF.
∴四邊形BFDE是平行四邊形.
∴EF與BD互相平分.
考點:全等三角形和平行四邊形
點評:本題考查全等三角形的證明及平行四邊形的判斷,解決此題須考生熟悉全等三角形的證明及平行四邊形的判斷方法,此類題是中考的重點
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com