已知拋物線y=x2 + 1(如圖所示).
(1)填空:拋物線的頂點(diǎn)坐標(biāo)是(______,______),對稱軸是_____;
(2)已知y軸上一點(diǎn)A(0,2),點(diǎn)P在拋物線上,過點(diǎn)P作PB⊥x軸,垂足為B.若△PAB是等邊三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,點(diǎn)M在直線AP上.在平面內(nèi)是否存在點(diǎn)N,使四邊形OAMN為菱形?若存在,直接寫出所有滿足條件的點(diǎn)N的坐標(biāo);若不存在,請說明理由.
(1)頂點(diǎn)坐標(biāo)是(0,1),對稱軸是y軸(或x=0)(2)(,4)或(- ,4)(3)存在。所有滿足條件的點(diǎn)N的坐標(biāo)為 (,1), (-,-1), (-,1), (,-1)。
【解析】解:(1)頂點(diǎn)坐標(biāo)是(0,1),對稱軸是y軸(或x=0)。
(2)
∵△PAB是等邊三角形,
∴∠ABO=90°-60°=30°。
∴AB=2OA=4!郟B=4。
把y=4代入y=x2+1,得 x=±。
∴點(diǎn)P的坐標(biāo)為(,4)或(- ,4)。
(3)存在。所有滿足條件的點(diǎn)N的坐標(biāo)為
(,1), (-,-1), (-,1), (,-1)。
(1)根據(jù)函數(shù)的解析式直接寫出其頂點(diǎn)坐標(biāo)和對稱軸即可。
(2)根據(jù)等邊三角形的性質(zhì)求得PB=4,將PB=4代入函數(shù)的解析式后求得x的值即可作為P點(diǎn)的橫坐標(biāo),代入解析式即可求得P點(diǎn)的縱坐標(biāo)。
(3)首先求得直線AP的解析式,然后設(shè)出點(diǎn)M的坐標(biāo),利用勾股定理表示出有關(guān)AP的長即可得到有關(guān)M點(diǎn)的橫坐標(biāo)的方程,求得M的橫坐標(biāo)后即可求得其縱坐標(biāo):設(shè)存在點(diǎn)M使得OAMN是菱形,
∵∠OAP>900,∴OA不可能為菱形的對角線,只能為菱形的邊。
若點(diǎn)P的坐標(biāo)為(,4),∵點(diǎn)A的坐標(biāo)為(0,2),
設(shè)線段AP所在直線的解析式為y=kx+b,則,解得: 。
∴AP所在直線的解析式為:y=x+2。
∵點(diǎn)M在直線AP上,∴設(shè)點(diǎn)M的坐標(biāo)為:(m, m+2)。
如圖,作MH⊥y軸于點(diǎn)H,
則MH= m,AN=OH-OA=m+2-2=m。
∵OA為菱形的邊,∴AM=AO=2。
∴在Rt△AMH中,AH2+MH2=AM2,即:m2+(m)2=22,
解得:m=±!郙(,3)或(-,1)。
當(dāng)M(,3)時,N(,1);當(dāng)M(-,1)時,N(-,-1)。
若點(diǎn)P的坐標(biāo)為(-,4),同理可得N的坐標(biāo)為(-,1)或(,-1)。
綜上所述,存在點(diǎn)N(,1),(-,-1),(-,1),(,-1),使得
四邊形OAMN是菱形。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com