【題目】以x為自變量的二次函數(shù)y=x2﹣(b﹣2)x+b﹣3的圖象不經(jīng)過第三象限,則實(shí)數(shù)b的取值范圍是____.
【答案】b≥3.
【解析】
由于二次函數(shù)y=x2-(b-2)x+b-3的圖象不經(jīng)過第三象限,所以拋物線的頂點(diǎn)在x軸的上方或在x軸的下方經(jīng)過一、二、四象限,根據(jù)二次項(xiàng)系數(shù)知道拋物線開口方向向上,由此可以確定拋物線與x軸有無交點(diǎn),拋物線與y軸的交點(diǎn)的位置,由此即可得出關(guān)于b的不等式組,解不等式組即可求解.
解:∵二次函數(shù)y=x2-(b-2)x+b-3的圖象不經(jīng)過第三象限,
∵二次項(xiàng)系數(shù)a=1,
∴拋物線開口方向向上,
當(dāng)拋物線的頂點(diǎn)在x軸上方時(shí),
則b-30,△=(b-2)2-4(b-3)0,
∴b=4;
當(dāng)拋物線的頂點(diǎn)在x軸的下方時(shí),
設(shè)拋物線與x軸的交點(diǎn)的橫坐標(biāo)分別為x1,x2,
∴x1+x2=(b-2)>0,b-30,
∴△=(b-2)2-4(b-3)>0,①
b-2>0,②
b-3≥0,③
由①得b=4,
由②③得b≥3,
∴b≥3.
故答案為:b≥3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)購買甲、乙兩種樹苗進(jìn)行綠化,已知甲種樹苗每棵30元,乙種樹苗每棵20元,且乙種樹苗棵數(shù)比甲種樹苗棵數(shù)的2倍少40棵,購買兩種樹苗的總金額為9000元.
(1)求購買甲、乙兩種樹苗各多少棵?
(2)為保證綠化效果,社區(qū)決定再購買甲、乙兩種樹苗共10棵,總費(fèi)用不超過230元,求可能的購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+3經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,點(diǎn)P為第二象限內(nèi)拋物線上的動(dòng)點(diǎn).
(1)拋物線的解析式為 ,拋物線的頂點(diǎn)坐標(biāo)為 ;
(2)如圖1,連接OP交BC于點(diǎn)D,當(dāng)S△CPD:S△BPD=1:2時(shí),請(qǐng)求出點(diǎn)D的坐標(biāo);
(3)如圖2,點(diǎn)E的坐標(biāo)為(0,﹣1),點(diǎn)G為x軸負(fù)半軸上的一點(diǎn),∠OGE=15°,連接PE,若∠PEG=2∠OGE,請(qǐng)求出點(diǎn)P的坐標(biāo);
(4)如圖3,是否存在點(diǎn)P,使四邊形BOCP的面積為8?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和直線都經(jīng)過點(diǎn),點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn)為拋物線上的動(dòng)點(diǎn),直線與軸、軸分別交于兩點(diǎn).
(1)求的值;
(2)當(dāng)是以為底邊的等腰三角形時(shí),求點(diǎn)的坐標(biāo);
(3)滿足(2)的條件時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑CD垂直于弦AB,垂足為點(diǎn)E,∠ACD=22.5°,若CD=6cm,則AB的長為( 。
A. 4cm B. 3cm C. 2cm D. 2cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知、兩地之間有一條270千米的公路,甲、乙兩車同時(shí)出發(fā),甲車以60千米/時(shí)的速度沿此公路從地勻速開往地,乙車從地沿此公路勻速開往地,兩車分別到達(dá)目的地后停止.甲、乙兩車相距的路程(千米)與甲車的行駛時(shí)間(時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)乙車的速度為 千米/時(shí), , .
(2)求甲、乙兩車相遇后與之間的函數(shù)關(guān)系式.
(3)當(dāng)甲車到達(dá)距地70千米處時(shí),求甲、乙兩車之間的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:AB是⊙O的直徑,AC交⊙O于G,E是AG上一點(diǎn),D為△BCE內(nèi)心,BE交AD于F,且∠DBE=∠BAD.
(1)求證:BC是⊙O的切線;
(2)求證:DF=DG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形△ABC中,AC=6,∠C=90°,∠DCE=45°,AD=3,則BE的長為_____________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形內(nèi)接于圓,是圓的直徑,過點(diǎn)的切線與的延長線相交于點(diǎn).且
(1)求證:;
(2)過圖1中的點(diǎn)作,垂足為(如圖2),當(dāng),時(shí),求圓的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com