【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于( )
A.60
B.80
C.30
D.40
【答案】D
【解析】解:過(guò)點(diǎn)A作AM⊥x軸于點(diǎn)M,如圖所示. 設(shè)OA=a,
在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB= ,
∴AM=OAsin∠AOB= a,OM= = a,
∴點(diǎn)A的坐標(biāo)為( a, a).
∵點(diǎn)A在反比例函數(shù)y= 的圖象上,
∴ a× a= =48,
解得:a=10,或a=﹣10(舍去).
∴AM=8,OM=6,OB=OA=10.
∵四邊形OACB是菱形,點(diǎn)F在邊BC上,
∴S△AOF= S菱形OBCA= OBAM=40.
故選D.
過(guò)點(diǎn)A作AM⊥x軸于點(diǎn)M,設(shè)OA=a,通過(guò)解直角三角形找出點(diǎn)A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點(diǎn)F在邊BC上,即可得出S△AOF= S菱形OBCA , 結(jié)合菱形的面積公式即可得出結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠B=∠E=40°,∠BAE=60°,且AD平分∠BAE交BC于D.
(1)求證:BD=DE;
(2)若AB=CD,求∠ACD的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)(a-b)2(a-b)3(b-a)5 (2)(a-b+c)3(b-a-c)5(a-b+c)6
(3)(b-a)m·(b-a)n-5·(a-b)5 (4)x·xm-1+x2·xm-2-3x3·xm-3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點(diǎn)C(0,4)與x軸交于點(diǎn)A、B,點(diǎn)B(4,0),拋物線的對(duì)稱軸為x=1.直線AD交拋物線于點(diǎn)D(2,m).
(1)求二次函數(shù)的解析式并寫出D點(diǎn)坐標(biāo);
(2)點(diǎn)E是BD的中點(diǎn),點(diǎn)Q是線段AB上一動(dòng)點(diǎn),當(dāng)△QBE和△ABD相似時(shí),求點(diǎn)Q的坐標(biāo);
(3)拋物線與y軸交于點(diǎn)C,直線AD與y軸交于點(diǎn)F,點(diǎn)M為拋物線對(duì)稱軸上的動(dòng)點(diǎn),點(diǎn)N在x軸上,當(dāng)四邊形CMNF周長(zhǎng)取最小值時(shí),求出滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上A 點(diǎn)對(duì)應(yīng)的數(shù)為﹣5,B 點(diǎn)在A 點(diǎn)右邊,電子螞蟻甲、乙在B分別以2個(gè)單位/秒、1個(gè)單位/秒的速度向左運(yùn)動(dòng),電子螞蟻丙在A 以3個(gè)單位/秒的速度向右運(yùn)動(dòng).
(1)若電子螞蟻丙經(jīng)過(guò)5秒運(yùn)動(dòng)到C 點(diǎn),求C 點(diǎn)表示的數(shù);
(2)若它們同時(shí)出發(fā),若丙在遇到甲后1秒遇到乙,求B 點(diǎn)表示的數(shù);
(3)在(2)的條件下,設(shè)它們同時(shí)出發(fā)的時(shí)間為t 秒,是否存在t的值,使丙到乙的距離是丙到甲的距離的2倍?若存在,求出t 值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)著名數(shù)學(xué)家華羅庚曾經(jīng)說(shuō)過(guò),“數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事非。”數(shù)形結(jié)合的思想方法在數(shù)學(xué)中應(yīng)用極為廣泛.
觀察下列按照一定規(guī)律堆砌的鋼管的橫截面圖:
用含n的式子表示第n個(gè)圖的鋼管總數(shù).
(分析思路)
圖形規(guī)律中暗含數(shù)字規(guī)律,我們可以采用分步的方法,從圖形排列中找規(guī)律;把圖形看成幾個(gè)部分的組合,并保持結(jié)構(gòu),找到每一部分對(duì)應(yīng)的數(shù)字規(guī)律,進(jìn)而找到整個(gè)圖形對(duì)應(yīng)的數(shù)字規(guī)律。
如:要解決上面問題,我們不妨先從特例入手:(統(tǒng)一用S表示鋼管總數(shù))
(解決問題)
(1)如圖,如果把每個(gè)圖形按照它的行來(lái)分割觀察,你發(fā)現(xiàn)了這些鋼管的堆砌規(guī)律了嗎?像n=1、n=2的情形那樣,在所給橫線上,請(qǐng)用數(shù)學(xué)算式表達(dá)你發(fā)現(xiàn)的規(guī)律.
S=1+2 S=2+3+4 _____________ ______________
(2)其實(shí),對(duì)同一個(gè)圖形,我們的分析眼光可以是不同的。請(qǐng)你像(1)那樣保持結(jié)構(gòu)的、對(duì)每一個(gè)所給圖形添加分割線,提供與(1)不同的分割方式;并在所給橫線上,請(qǐng)用數(shù)學(xué)算式表達(dá)你發(fā)現(xiàn)的規(guī)律:
_______ ____________ _______________ _______________
(3)用含n的式子列式,并計(jì)算第n個(gè)圖的鋼管總數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,填空:
(1)若∠4=∠3,則____∥_____,理由是______;
(2)若∠2=∠E,則____∥___,理由是____;
(3)若∠A=∠ABE=180°,則____∥___,理由是____;
(4)若∠2=∠____,則DA∥EB,理由是____;
(5)若∠DBC+∠_____=180°,則DB∥EC,理由是____;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個(gè)頂點(diǎn)B(1,0),C(3,0),D(3,4),以A為頂點(diǎn)的拋物線y=ax2+bx+c過(guò)點(diǎn)C,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒 個(gè)單位的速度沿線段AD向點(diǎn)D運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,過(guò)點(diǎn)P作PE⊥x軸交拋物線于點(diǎn)M,交AC于點(diǎn)N.
(1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;
(2)當(dāng)t為何值時(shí),△ACM的面積最大?最大值為多少?
(3)點(diǎn)Q從點(diǎn)C出發(fā),以每秒1個(gè)單位的速度沿線段CD向點(diǎn)D運(yùn)動(dòng),當(dāng)t為何值時(shí),在線段PE上存在點(diǎn)H,使以C,Q,N,H為頂點(diǎn)的四邊形為菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC的面積為84,BC=21,現(xiàn)將△ABC沿直線BC向右平移a(0<a<21)個(gè)單位到△DEF的位置.
(1)求BC邊上的高;
(2)若AB=10,
①求線段DF的長(zhǎng);
②連結(jié)AE,當(dāng)△ABE時(shí)等腰三角形時(shí),求a的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com