【題目】如圖,不等邊△ABC內(nèi)接于,I是其內(nèi)心,AI⊥OI,AB=2,BC=3,則AC的長(zhǎng)為( )
A. 4B. C. D.
【答案】A
【解析】
延長(zhǎng)AI交⊙O于D,連接OA、OD、BD和BI,可得BD=ID=AI.易證,則OD⊥BC,作IG⊥AB于G,又∠DBE=∠IAG,則BD=AI,所以Rt△BDE≌Rt△AIG,從而得出AB+AC=2BC,代入數(shù)據(jù)即可得到結(jié)論.
證明:如圖1,延長(zhǎng)AI交⊙O于D,連接OA、OD、BD和BI,
∵OA=OD,OI⊥AD,
∴AI=ID,
又∠DBI=∠DBC+∠CBI=∠DAC+∠CBI,
=,
因此,BD=ID=AI,
∵I是其內(nèi)心,
∴AD是∠BAC的平分線(xiàn),
∴
,∴OD⊥BC,記垂足為E,
∴ ,
作IG⊥AB于G,∵∠DBE=∠IAG,BD=AI,
∴△BDE≌△AIG(AAS),
∴,
如圖2,過(guò)O作OM⊥AC,ON⊥BC,
∵I是其內(nèi)心,
∴AG=AM,CM=CN,BG=BN,
∴AG=AC-CM=AC-(BC-BN)=AC-BC+BN=AC-BC+(AB-AG),
∴,
∴AB+AC=2BC,
∵AB=2,BC=3,
∴AC=4,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=8,E是邊AB上一點(diǎn),且AE=AB,⊙O經(jīng)過(guò)點(diǎn)E,與邊CD所在直線(xiàn)相切于點(diǎn)G(∠GEB為銳角),與邊AB所在直線(xiàn)相交于另一點(diǎn)F,且EG:EF=.當(dāng)邊AD或BC所在的直線(xiàn)與⊙O相切時(shí),AB的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形AEHC是由三個(gè)全等矩形拼成的,AH與BE、BF、DF、DG、CG分別交于點(diǎn)P、Q、K、M、N.設(shè)△BPQ,△DKM,△CNH的面積依次為S1,S2,S3.若S1+S3=20,則S2的值為( )
A. 6 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程(k﹣1)x2+2kx+2=0.
(1)求證:無(wú)論k為何值,方程總有實(shí)數(shù)根.
(2)設(shè)x1,x2是方程(k﹣1)x2+2kx+2=0的兩個(gè)根,記,S的值能為2嗎?若能,求出此時(shí)k的值;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程(k﹣1)x2+(2k﹣3)x+k+1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)如果k是符合條件的最大整數(shù),且一元二次方程x2﹣4x+k=0與x2+mx﹣1=0有一個(gè)相同的根,求此時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,AB為的直徑,點(diǎn)C是半圓上一點(diǎn),CE⊥AB于E,BF∥OC,連接BC,CF.
(1)求證:∠OCF=∠ECB;
(2)當(dāng)AB=10,BC=,求CF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y=ax2+bx+3與x軸交于點(diǎn)A(﹣1,0),B(3,0).
(1)求拋物線(xiàn)的解析式;
(2)過(guò)點(diǎn)D(0,)作x軸的平行線(xiàn)交拋物線(xiàn)于E,F兩點(diǎn),求EF的長(zhǎng);
(3)當(dāng)y≤時(shí),直接寫(xiě)出x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】工人師傅童威準(zhǔn)備在一塊長(zhǎng)為60,寬為48的長(zhǎng)方形花圃?xún)?nèi)修建四條寬度相等,且與各邊垂直的小路.四條小路圍成的中間部分恰好是一個(gè)正方形,且邊長(zhǎng)是小路寬度的8倍.若四條小路所占面積為160.設(shè)小路的寬度為x,依題意列方程,化為一般形式為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一名在校大學(xué)生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷(xiāo)售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)10 元/件,已知銷(xiāo)售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于 16 元/件, 市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量 y (件)與銷(xiāo)售價(jià) x (元/件)之間的函數(shù)關(guān)系如圖所示.。
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)每件銷(xiāo)售價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)為144元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com