【題目】如圖,E是正方形ABCD的對(duì)角線BD上一點(diǎn),EFBC,EGCD,垂足分別是F、G求證:AE=FG

【答案】證明見(jiàn)解析

【解析】

試題分析:根據(jù)題意我們不難得出四邊形GEFC是個(gè)矩形,因此它的對(duì)角線相等如果連接EC,那么EC=FG,要證明AE=FG,只要證明EC=AE即可證明AE=EC就要通過(guò)全等三角形來(lái)實(shí)現(xiàn)三角形ABE和BEC中,有ABD=CBD,有AB=BC,有一組公共邊BE,因此構(gòu)成了全等三角形判定中的SAS,因此兩三角形全等,得AE=EC,即AE=GF

試題解析:連接EC

四邊形ABCD是正方形,EFBC,EGCD,

∴∠GCF=CFE=CGE=90°,

四邊形EFCG為矩形

FG=CE

又BD為正方形ABCD的對(duì)角線,

∴∠ABE=CBE

ABE和CBE中,

,

∴△ABE≌△CBESAS).

AE=EC

AE=FG

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰ABC中,AB=AC.線段AB的垂直平分線交ABD,交ACE,連接BE.

1)當(dāng)A=40°時(shí),求CBE的度數(shù);

2)若ABC周長(zhǎng)為18,底邊BC=4,則BEC周長(zhǎng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC和A″B″C″及點(diǎn)O.

(1)畫(huà)出ABC關(guān)于點(diǎn)O對(duì)稱(chēng)的△A′B′C′;

(2)若A″B″C″與A′B′C′關(guān)于點(diǎn)O′對(duì)稱(chēng),請(qǐng)確定點(diǎn)O′的位置;

(3)探究線段OC′與線段CC″之間的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的布袋里裝有4個(gè)標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同,小明從布袋里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小紅在剩下的3個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y

(1)計(jì)算由x、y確定的點(diǎn)(x,y)在函數(shù)y=﹣x+5的圖象上的概率.

(2)小明和小紅約定做一個(gè)游戲,其規(guī)則為:若x、y滿足xy6,則小明勝;若x、y滿足xy6,則小紅勝,這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由;若不公平,請(qǐng)寫(xiě)出公平的游戲規(guī)則.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD內(nèi)一點(diǎn),PE⊥AB,PF⊥AD,垂足分別是EF,若PE=PF,下列說(shuō)法不正確的是( )

A. 點(diǎn)P一定在菱形ABCD的對(duì)角線AC

B. 可用HL證明Rt△AEP≌Rt△AFP

C. AP平分∠BAD

D. 點(diǎn)P一定是菱形ABCD的兩條對(duì)角線的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將矩形ABCD折疊使A,C重合,折痕交BCE,交ADF,

1)求證:四邊形AECF為菱形;

2)若AB=4,BC=8,求菱形的邊長(zhǎng);

3)在(2)的條件下折痕EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀)如圖1,四邊形OABC中,OA=a,OC=3,BC=2,

∠AOC=∠BCO=90°,經(jīng)過(guò)點(diǎn)O的直線l將四邊形分成兩部分,直線lOC所成的角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點(diǎn)C落在點(diǎn)D處,我們把這個(gè)操作過(guò)程記為FZ[θ,a].

(理解)

若點(diǎn)D與點(diǎn)A重合,則這個(gè)操作過(guò)程為FZ[45°,3];

(嘗試)

(1)若點(diǎn)D恰為AB的中點(diǎn)(如圖2),求θ;

(2)經(jīng)過(guò)FZ[45°,a]操作,點(diǎn)B落在點(diǎn)E處,若點(diǎn)E在四邊形OABC的邊AB上,求出a的值;若點(diǎn)E落在四邊形OABC的外部,直接寫(xiě)出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知△ABC中,AB=10cm,AC=8cmBC=6cm.如果點(diǎn)PB出發(fā)沿BA方向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)QA出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為2cm/s.連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤4).解答下列問(wèn)題:

1)當(dāng)t為何值時(shí),PQ∥BC

2)設(shè)△AQP面積為S(單位:cm2),當(dāng)t為何值時(shí),S取得最大值,并求出最大值.

3)是否存在某時(shí)刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.

4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時(shí)刻t,使四邊形AQPQ′為菱形?若存在,求出此時(shí)菱形的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角度為α(0°<α≤45°),得到△ABC′.

①當(dāng)α為多少度時(shí),ABDC?

②當(dāng)旋轉(zhuǎn)到圖③所示位置時(shí),α為多少度?

③連接BD,當(dāng)0°<α≤45°時(shí),探求∠DBC′+CAC′+BDC值的大小變化情況,并給出你的證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案