已知⊙O過(guò)點(diǎn)D(4,3),點(diǎn)H與點(diǎn)D關(guān)于軸對(duì)稱,過(guò)H作⊙O切線交軸于點(diǎn)A

【小題1】(1)求⊙O半徑;
【小題2】(2)求的值;
【小題3】(3)如圖,設(shè)⊙O與軸正半軸交點(diǎn)P,點(diǎn)E、F是線段OP上的動(dòng)點(diǎn)(與P點(diǎn)不重合),聯(lián)結(jié)并延長(zhǎng)DE、DF交⊙O于點(diǎn)B、C,直線BC交軸于點(diǎn)G,若是以EF為底的等腰三角形,試探索的大小怎樣變化?請(qǐng)說(shuō)明理由。

【小題1】(1)點(diǎn)在⊙O上,
∴ ⊙O的半徑!1分
【小題2】(2)如圖1,聯(lián)結(jié)HD交OA于Q,則HD⊥OA。
聯(lián)結(jié)OH,則OH⊥AH。
∴ ∠HAO=∠OHQ。
!3分
【小題3】(3)如圖2,設(shè)點(diǎn)D關(guān)于軸的對(duì)稱點(diǎn)為H,聯(lián)結(jié)HD交OP于Q,則HD⊥OP。
又DE=DF,
∴ DH平分∠BDC。
。
∴ 聯(lián)結(jié)OH,則OH⊥BC。
 
圖1                           圖2
∴ ∠CGO=∠OHQ。
 ……………………7分解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,設(shè)△ABC是直角三角形,點(diǎn)D在斜邊BC上,BD=4DC.已知圓過(guò)點(diǎn)C且與AC相交于F,與AB相切于AB的中點(diǎn)G.求證:AD⊥BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知一次函數(shù)過(guò)點(diǎn)A(1,2)與 B(2,5),求這個(gè)函數(shù)的解析式.
(2)已知一次函數(shù)y=3x+6,求函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線過(guò)點(diǎn)A(0,6),B(2,0),C(6,0),直線AB交拋物線的對(duì)稱軸于點(diǎn)F,直線AC交拋物線對(duì)稱軸于點(diǎn)E.
(1)求拋物線的解析式;
(2)求證:點(diǎn)E與點(diǎn)F關(guān)于頂點(diǎn)D對(duì)稱;
(3)在y軸上是否存在這樣的點(diǎn)P,使△AFP與△FDC相似?若有,請(qǐng)求出所有合條件的點(diǎn)P的坐標(biāo);若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線過(guò)點(diǎn)A(-1,0),B(0,6),對(duì)稱軸為直線x=1,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O過(guò)點(diǎn)D(4,3),點(diǎn)H與點(diǎn)D關(guān)于x軸對(duì)稱,過(guò)H作⊙O的切線交x軸于點(diǎn)A.
(1)求sin∠HAO的值;
(2)如圖,設(shè)⊙O與x軸正半軸交點(diǎn)為P,點(diǎn)E、F是線段OP上的動(dòng)點(diǎn)(與點(diǎn)P不重合),連接并延長(zhǎng)DE、DF交⊙O于點(diǎn)B、C,直線BC交x軸于點(diǎn)G,若△DEF是以EF為底的等腰三角形,試探索sin∠CGO的大小怎樣變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案