【題目】以水潤城,打造四河一庫生態(tài)水系工程,是鞏義堅持不懈推進文明創(chuàng)建與百城提質(zhì)深度融合的縮影,伊洛河畔正是此項目中的一段.如今,伊洛河畔需要鋪設(shè)一條長為米的管道,決定由甲、乙兩個工程隊來完成.已知甲工程隊比乙工程隊每天能多鋪設(shè)米,且甲工程隊鋪設(shè)米所用的天數(shù)與乙工程隊鋪設(shè)米所用的天數(shù)相同.(完成任務(wù)的工期為整數(shù))
(1)甲、乙工程隊每天各能鋪設(shè)多少米?
(2)如果要求完成該項管道鋪設(shè)任務(wù)的工期不超過天,那么為兩工程隊分配工程量的方案有幾種?請你幫助設(shè)計出來(工程隊分配工程量為整百數(shù))
【答案】(1)甲、乙工程隊每天分別能鋪設(shè)米和米;(2)分配方案有種:方案一:分配給甲工程隊米,分配給乙工程隊米;方案二:分配給甲工程隊米,分配給乙工程隊米;方案三:分配給甲工程隊米,分配給乙工程隊米.
【解析】
(1)設(shè)甲工程隊每天能鋪設(shè)x米.根據(jù)甲工程隊鋪設(shè)350米所用的天數(shù)與乙工程隊鋪設(shè)250米所用的天數(shù)相同,列方程求解;
(2)設(shè)分配給甲工程隊y米,則分配給乙工程隊(1000y)米.根據(jù)完成該項工程的工期不超過10天,列不等式組進行分析.
(1)設(shè)甲工程隊每天能鋪設(shè)米,則乙工程隊每天能鋪設(shè)米,
根據(jù)題意得:,
即,
∴,
解得:,
經(jīng)檢驗,是所列分式方程的解,且與題意相符,
∴(米),
答:甲、乙工程隊每天分別能鋪設(shè)米和米;
(2)設(shè)分配給甲工程隊米,則分配給乙工程隊米.
由題意,得
解得:.
∵分配的工程量為整百數(shù),
∴y只能取或或,
所以分配方案有種:
方案一:分配給甲工程隊米,分配給乙工程隊米;
方案二:分配給甲工程隊米,分配給乙工程隊米;
方案三:分配給甲工程隊米,分配給乙工程隊米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一位運動員在距籃下4m處跳起投籃,球運行的路線是拋物線,當球運行的水平距離是2.5m時,達到最大高度3.5m,然后準確落入籃圈.已知籃圈中心到地面的距離為3.05m.
(1)建立如圖所示的平面直角坐標系,求拋物線的解析式.
(2)該運動員身高1.8m,在這次跳投中,球在頭頂上0.25m處出手,
問:球出手時,他距離地面的高度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對學(xué)生最喜愛的一種書籍類型進行隨機抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計圖,請根據(jù)圖1和圖2提供的信息,解答下列問題:
(1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?
(2)請把折線統(tǒng)計圖(圖1)補充完整;
(3)求出扇形統(tǒng)計圖(圖2)中,體育部分所對應(yīng)的圓心角的度數(shù);
(4)如果這所中學(xué)共有學(xué)生1800名,那么請你估計最喜愛科普類書籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,于點,的平分線分別交、于、兩點,為的中點,的延長線交于點,連接,下列結(jié)論:①為等腰三角形;②;③;④.其中正確的結(jié)論有( )
A.個B.個C.個D.個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG的邊長分別為a和b,正方形CEFG繞點C旋轉(zhuǎn),給出下列結(jié)論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結(jié)論是( 。
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.
(1)當A,B,C三點在同一直線上時(如圖1),求證:M為AN的中點;
(2)將圖1中的△BCE繞點B旋轉(zhuǎn),當A,B,E三點在同一直線上時(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點B旋轉(zhuǎn)到圖3位置時,(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=,AC=,BC=,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,M為EF中點,則AM的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.
(1)證明:∠C=∠D;
(2)若∠BEF=140°,求∠C的度數(shù);
(3)若EF=2,tanB=3,求CECG的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com