【題目】某中學(xué)對(duì)學(xué)生最喜愛的一種書籍類型進(jìn)行隨機(jī)抽樣調(diào)查,收集整理數(shù)據(jù)后,繪制出以下兩幅未完成的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖1和圖2提供的信息,解答下列問題:

1)在這次抽樣調(diào)查中,一共調(diào)查了多少名學(xué)生?

2)請(qǐng)把折線統(tǒng)計(jì)圖(圖1)補(bǔ)充完整;

3)求出扇形統(tǒng)計(jì)圖(圖2)中,體育部分所對(duì)應(yīng)的圓心角的度數(shù);

4)如果這所中學(xué)共有學(xué)生1800名,那么請(qǐng)你估計(jì)最喜愛科普類書籍的學(xué)生人數(shù).

【答案】1)一共調(diào)查了300名學(xué)生;(2)見解析(3;(4

【解析】

1)用選文學(xué)書的人數(shù)除以選文學(xué)書的百分比,即可得出答案;

2)先求出選藝術(shù)和其他的人數(shù),再補(bǔ)充折線圖即可得出答案;

3)用選體育的人數(shù)除以總?cè)藬?shù)得到選體育的百分比,再乘以360°,即可得出答案;

4)用選科學(xué)的人數(shù)除以總?cè)藬?shù)得到選科學(xué)的百分比,再乘以1800,即可得出答案.

解:(1(名),故一共調(diào)查了300名學(xué)生;

2)藝術(shù)的人數(shù):名,

其它的人數(shù):名;

補(bǔ)全折線圖如圖:

3)體育部分所對(duì)應(yīng)的圓心角的度數(shù)為:;

4(名).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過點(diǎn)A(0,3)、B(1,0),其對(duì)稱軸為直線l:x=2,過點(diǎn)AACx軸交拋物線于點(diǎn)C,AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.

(1)求拋物線的解析式;

(2)若動(dòng)點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;

(3)如圖②,F(xiàn)是拋物線的對(duì)稱軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,、的垂直平分線、相交于點(diǎn),若等于76°,則____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有(

A.一處B.二處C.三處D.四處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD的周長為36,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E是CD的中點(diǎn),BD=12,則△DOE的周長為( 。

A. 15 B. 18 C. 21 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+mynx5nn≠0)的交點(diǎn)的橫坐標(biāo)為3,則關(guān)于x的不等式x+mnx5n0的整數(shù)解為(

A.3B.4C.5D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中央電視臺(tái)的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級(jí)模擬開展“中國詩詞大賽”比賽,對(duì)全年級(jí)同學(xué)成績進(jìn)行統(tǒng)計(jì)后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個(gè)等級(jí)并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計(jì)圖請(qǐng)結(jié)合統(tǒng)計(jì)圖中的信息回答下列問題

1)扇形統(tǒng)計(jì)圖中“優(yōu)秀”所對(duì)應(yīng)的扇形的圓心角為 ,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.

2)此次比賽有四名同學(xué)活動(dòng)滿分分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請(qǐng)用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以水城,打造四河一庫生態(tài)水系工程,是鞏義堅(jiān)持不懈推進(jìn)文明創(chuàng)建與百城提質(zhì)深度融合的縮影,伊洛河畔正是此項(xiàng)目中的一段.如今,伊洛河畔需要鋪設(shè)一條長為米的管道,決定由甲、乙兩個(gè)工程隊(duì)來完成.已知甲工程隊(duì)比乙工程隊(duì)每天能多鋪設(shè)米,且甲工程隊(duì)鋪設(shè)米所用的天數(shù)與乙工程隊(duì)鋪設(shè)米所用的天數(shù)相同.(完成任務(wù)的工期為整數(shù))

1)甲、乙工程隊(duì)每天各能鋪設(shè)多少米?

2)如果要求完成該項(xiàng)管道鋪設(shè)任務(wù)的工期不超過天,那么為兩工程隊(duì)分配工程量的方案有幾種?請(qǐng)你幫助設(shè)計(jì)出來(工程隊(duì)分配工程量為整百數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

關(guān)于x的方程:x+c+的解為x1c,x2;xc(可變形為x+c+)的解為x1c,x2;x+c+的解為x1c,x2 Zx+c+的解為x1cx2Z.

1)歸納結(jié)論:根據(jù)上述方程與解的特征,得到關(guān)于x的方程x+c+m0)的解為   

2)應(yīng)用結(jié)論:解關(guān)于y的方程ya

查看答案和解析>>

同步練習(xí)冊(cè)答案