如圖,已知拋物線經(jīng)過A(1,0),B(0,2)兩點,頂點為D.

1.求拋物線的解析式;

2.將△OAB繞點A順時針旋轉(zhuǎn)90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖像的函數(shù)關(guān)系式;

3.設(shè)(2)中平移后,所得拋物線與y軸的交點為,頂點為,若點N在平移后的拋物線上,且滿足△的面積是△面積的2倍,求點N的坐標.

 

【答案】

 

1.

2.

3.(1,-1)或(3,1).

【解析】拋物線的解析式解析式的求解一般為待定系數(shù)法。注意其中的a是給了的所以兩個點坐標就可以了。而問題(2)有關(guān)函數(shù)平移問題注意上下來移和C有關(guān)。

解:(1)已知拋物線經(jīng)過A(1,0),B(0,2),

解得

∴所求拋物線的解析式為.    (3分)

(2)∵A(1,0),B(0,2),∴OA=1,OB=2

可得旋轉(zhuǎn)后C點的坐標為(3,1)        

當x=3時,由得y=2,

可知拋物線過點(3,2)

∴將原拋物線沿y軸向下平移1個單位后過點C.

∴平移后的拋物線解析式為:.        (7分)

(3)∵點N在上,可設(shè)N點坐標為()

配方得.∴其對稱軸為.  6分

①當0<時,如圖①,

∵S=2S=1.此時

∴N點的坐標為(1,-1).  

②當時,如圖②

同理可得

=3. 此時

∴點N的坐標為(3,1).

綜上,點N的坐標為(1,-1)或(3,1).   (13分)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=-2與x軸交于點C,直線y=-精英家教網(wǎng)2x+1經(jīng)過拋物線上一點B(2,m),且與y軸.直線x=-2分別交于點D、E.
(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)①判斷△CBE的形狀,并說明理由;②判斷CD與BE的位置關(guān)系;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•衡陽)如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1經(jīng)過拋物線上一點B(-2,m),且與y軸、直線x=2分別交于點D、E,
(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)求證:①CB=CE;②D是BE的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過坐標原點,與x軸的另一個交點為A,且頂點M坐標為(1,2),
(1)求該拋物線的解析式;
(2)現(xiàn)將它向右平移m(m>0)個單位,所得拋物線與x軸交于C、D兩點,與原拋物線交于點P,△CDP的面積為S,求S關(guān)于m的關(guān)系式;
(3)當m=2時,點Q為平移后的拋物線的一動點,是否存在這樣的⊙Q,使得⊙Q與兩坐標軸都相切?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線經(jīng)過原點O和x軸上的另一點E,頂點為M(2,4),矩形ABCD的頂點A與O重合,AD,AB分別在x,y軸上,且AD=2,AB=3.
(1)求該拋物線對應(yīng)的函數(shù)解析式;
(2)現(xiàn)將矩形ABCD以每秒1個單位長度的速度從左圖所示位置沿x軸的正方向勻速平行移動;同時AB上一動點P也以相同的速度從點A出發(fā)向B勻速運動,設(shè)它們的運動時間為t秒(0≤t≤3),直線AB與拋物線的交點為N,設(shè)多邊形PNCD的面積為S,試探究S是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案