【題目】如圖1,點P在正方形ABCD的對角線AC上,正方形的邊長是a,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點M、N.
(1)操作發(fā)現(xiàn):如圖2,固定點P,使△PEF繞點P旋轉(zhuǎn),當(dāng)PM⊥BC時,四邊形PMCN是正方形.填空:①當(dāng)AP=2PC時,四邊形PMCN的邊長是_________;②當(dāng)AP=nPC時(n是正實數(shù)),四邊形PMCN的面積是__________.
(2)猜想論證
如圖3,改變四邊形ABCD的形狀為矩形,AB=a,BC=b,點P在矩形ABCD的對角線AC上,Rt△PEF的兩條直角邊PE、PF分別交BC、DC于點M、N,固定點P,使△PEF繞點P旋轉(zhuǎn),則=_______.
(3)拓展探究
如圖4,當(dāng)四邊形ABCD滿足條件:∠B+∠D=180°,∠EPF=∠BAD時,點P在AC上,PE、PF分別交BC,CD于M、N點,固定P點,使△PEF繞點P旋轉(zhuǎn),請?zhí)骄?/span>的值,并說明理由.
【答案】(1)①a;②;(2);(3)見解析.
【解析】
試題分析:(1)①如圖2,∵PM⊥BC,AB⊥B,∴△PMC∽△ABC,∴=,又∵AP=2PC,∴=,即=,∴PM=a,即正方形PMCN的邊長是a;
②當(dāng)AP=nPC時(n是正實數(shù)),=,∴PM=a,∴四邊形PMCN的面積=(a)2=;
(2)如圖3,過P作PG⊥BC于G,作PH⊥CD于H,則∠PGM=∠PHN=90°,∠GPH=90°,∵Rt△PEF中,∠FPE=90°,∴∠GPM=∠HPN,∴△PGM∽△PHN,∴=,由PG∥AB,PH∥AD可得,,
∵AB=a,BC=b,∴,即=,∴=;
(3)如圖4,過P作PG∥AB,交BC于G,作PH∥AD,交CD于H,則∠HPG=∠DAB,∵∠EPF=∠BAD,∴∠EPF=∠GPH,即∠EPH+∠HPN=∠EPH+∠GPM,∴∠HPN=∠GPM,∵∠B+∠D=180°,∴∠PGC+∠PHC=180°,又∵∠PHN+∠PHC=180°,∴∠PGC=∠PHN,∴△PGM∽△PHN,∴=①,由PG∥AB,PH∥AD可得, ==,即=②,∴由①②可得, =.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH的頂點E,G分別在菱形ABCD的邊AD,BC上,頂點F,H在菱形ABCD的對角線BD上.
(1)求證:BG=DE.
(2)若E為AD中點,FH=2,求菱形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA,PB,AB,已知∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在點上正方的處發(fā)出一球,羽毛球飛行的高度與水平距離之間滿足函數(shù)表達式.已知點與球網(wǎng)的水平距離為,球網(wǎng)的高度為.
(1)當(dāng)時,①求的值.②通過計算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到點的水平距離為,離地面的高度為的處時,乙扣球成功,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線分別交軸、軸于點A、B,拋物線過A,B兩點,點P是線段AB上一動點,過點P作PC 軸于點C,交拋物線于點D.
(1)若拋物線的解析式為,設(shè)其頂點為M,其對稱軸交AB于點N.
①求點M、N的坐標(biāo);
②是否存在點P,使四邊形MNPD為菱形?并說明理由;
(2)當(dāng)點P的橫坐標(biāo)為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+4與坐標(biāo)軸分別交于點A、B,與直線y=x交于點C.在線段OA上,動點Q以每秒1個單位長度的速度從點O出發(fā)向點A做勻速運動,同時動點P從點A出發(fā)向點O做勻速運動,當(dāng)點P、Q其中一點停止運動時,另一點也停止運動.分別過點P、Q作x軸的垂線,交直線AB、OC于點E、F,連接EF.若運動時間為t秒,在運動過程中四邊形PEFQ總為矩形(點P、Q重合除外).
(1)求點P運動的速度是多少?
(2)當(dāng)t為多少秒時,矩形PEFQ為正方形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線MN與x軸,y軸分別相交于A,C兩點,分別過A,C兩點作x軸,y軸的垂線相交于B點,且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個實數(shù)根.
(1)求C點坐標(biāo);
(2)求直線MN的解析式;
(3)在直線MN上存在點P,使以點P,B,C三點為頂點的三角形是等腰三角形,請直接寫出P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的一邊AB為直徑作⊙O,交于BC的中點D,過點D作直線EF與⊙O相切,交AC于點E,交AB的延長線于點F.若△ABC的面積為△CDE的面積的8倍,則下列結(jié)論中,錯誤的是( 。
A.AC=2AOB.EF=2AEC.AB=2BFD.DF=2DE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 與x軸只有一個交點,且交點為A(-2,0).
(1)求b,c的值;
(2)若拋物線與y軸的交點為B,坐標(biāo)原點為O,求△OAB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com