【題目】已知點,,,,動點以每秒個單位長度的速度沿運動(不與點,重合),設(shè)運動時間為秒.
圖(1) 圖(2)
(1)求經(jīng)過,,三點的拋物線的函數(shù)表達式;
(2)點在(1)中的拋物線上,當為的中點時,若,求點的坐標;
(3)當在上運動時,如圖(2),過點作軸,,垂足分別為,,交于點,設(shè)矩形與重疊部分的面積為,當為何值時,最大,最大值是多少?
【答案】(1);(2)或;(3)當時,取得最大值為
【解析】
(1)設(shè)函數(shù)解析式為y=ax2+bx+c,將點A(-2,2),C(0,2),D(2,0)代入解析式即可;
(2)由已知易得點P為AB的垂直平分線與拋物線的交點,點P的縱坐標是1,代入解析式問題可解;
(3)分別用t表示GM、BF、MF表示面積,則問題可解.
解:(1)設(shè)拋物線的函數(shù)表達式為,則
解這個方程組,得
(2)
,
點為線段的垂直平分線與拋物線的交點
點的縱坐標為
由,
得,
所以點的坐標為或
(3),
,又
所以當時,取得最大值為
【點解】
本題考查二次函數(shù)綜合;熟練應(yīng)用待定系數(shù)法求函數(shù)解析式,掌握三角形全等的性質(zhì),直線交點的求法是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,以AB為直徑的⊙O交BC于點E,且點E是的中點,連接AD交BE于點F,連接EA,ED.
(1)求證:AC=AF;
(2)若EF=2,BF=8,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,其對稱軸為直線x=1,且與x軸的一個交點為A(3,0),下列說法錯誤的是( 。
A.b2>4acB.abc<0
C.4a﹣2b+c>0D.當x<﹣1時,y隨x的增大而增大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜邊在x軸上、斜邊長分別為2,4,6,…的等腰直角三角形.若△A1A2A3的頂點坐標分別為A1(2,0),A2(1,﹣1),A3(0,0),則依圖中所示規(guī)律,A2019的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,為放置在水平桌面上的臺燈,底座的高為.長度均為的連桿,與始終在同一水平面上.
(1)旋轉(zhuǎn)連桿,,使成平角,,如圖2,求連桿端點離桌面的高度.
(2)將(1)中的連桿繞點逆時針旋轉(zhuǎn),使,如圖3,問此時連桿端點離桌面的高度是增加了還是減少?增加或減少了多少?(精確到,參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一組鄰邊相等且對角互補的四邊形叫做等補四邊形.
理解:
如圖1,點在上,的平分線交于點,連接求證:四邊形是等補四邊形;
探究:
如圖2,在等補四邊形中連接是否平分請說明理由.
運用:
如圖3,在等補四邊形中,,其外角的平分線交的延長線于點求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,函數(shù)y=(x>0)的圖象G經(jīng)過點A(4,1),直線l:y=+b與圖象G交于點B,與y軸交于點C.
(1)求k的值;
(2)橫、縱坐標都是整數(shù)的點叫做整點.記圖象G在點A,B之間的部分與線段OA,OC,BC圍成的區(qū)域(不含邊界)為W.
①當b=﹣1時,直接寫出區(qū)域W內(nèi)的整點個數(shù);
②若區(qū)域W內(nèi)恰有4個整點,結(jié)合函數(shù)圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是ABC的外接圓,AB為直徑,∠BAC的平分線交于點D,過點D作DEAC分別交AC、AB的延長線于點E、F.
(1)求證:EF是的切線;
(2)若AC=4,CE=2,求的長度.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,拋物線的頂點為,經(jīng)過拋物線上的兩點和的直線交拋物線的對稱軸于點.
(1)求拋物線的解析式和直線的解析式.
(2)在拋物線上兩點之間的部分(不包含兩點),是否存在點,使得?若存在,求出點的坐標;若不存在,請說明理由.
(3)若點在拋物線上,點在軸上,當以點為頂點的四邊形是平行四邊形時,直接寫出滿足條件的點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com