【題目】要調(diào)查下列問題,你認(rèn)為哪些適合抽樣調(diào)查:①了解全國手機(jī)用戶對廢手機(jī)的處理情況;②檢測某地區(qū)空氣的質(zhì)量;③調(diào)查全市中學(xué)生一天的學(xué)習(xí)時間( )
A. ①② B. ①③ C. ②③ D. ①②③
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】檢驗(yàn)4個工件,其中超過標(biāo)準(zhǔn)質(zhì)量的克數(shù)記作正數(shù),不足標(biāo)準(zhǔn)質(zhì)量的克數(shù)記作負(fù)數(shù).從輕重的角度看,最接近標(biāo)準(zhǔn)的工件是( )
A.﹣2
B.﹣3
C.3
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn), 與y軸交于C(0,3),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0))。點(diǎn)P是拋物線上一個動點(diǎn),且在直線BC的上方.
(1)求這個二次函數(shù)的表達(dá)式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形,那么是否存在點(diǎn)P,使四邊形為菱形?若存在,請求出此時點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時,使△BPC的面積最大,求出點(diǎn)P的坐標(biāo)和△BPC的面積最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)已知,如圖①,在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E,求證:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角,請問結(jié)論DE=BD+CE是否成立?若成立,請你給出證明:若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=3x﹣5x2+1的二次項系數(shù)、一次項系數(shù)、常數(shù)項分別為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次考試共有25道選擇題,做對一題得4分,做錯一題減2分,不做得0分,若小明想確?荚嚦煽冊60分以上,那么他至少做對x題,應(yīng)滿足的不等式是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進(jìn)行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)= .例如12可以分解成1×12,2×6或3×4,因?yàn)?2﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)= .
(1)如果一個正整數(shù)a是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù).則對任意一個完全平方數(shù)m,F(xiàn)(m)=;
(2)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題:①無理數(shù)都是無限小數(shù);② 的平方根是±4;③等腰三角形的對稱軸是它頂角的平分線;④三角形三邊垂直平分線的交點(diǎn)一定在這個三角形的內(nèi)部,正確的有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com