【題目】如圖,在正方形ABCD中,AB=2,延長BC到點E,使CE=1,連接DE,動點P從點A出發(fā)以每秒1個單位的速度沿AB-BC-CD-DA向終點A運動,設點P的運動時間為t秒,當△ABP和△DCE全等時,t的值____.

【答案】37

【解析】

根據(jù)運動過程,需要分兩種情況進行討論,即BP=t-2=1AP=8-t=1,即可求得.

解:在△ABP與△DCE

AB=CD, ABP=DCE=90°,BP=CE

∴△ABP≌△DCE

BP=t-2=1,即t=3.

在△ABP與△DCE

AB=DC,∠BAP=DCE=90°,AP=CE

∴△ABP與△DCE,

AP=8-1=1t=7.

所以,當?shù)闹禐?/span>37秒時△ABP和△DCE全等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

AB在數(shù)軸上分別表示實數(shù),A、B兩點這間的距離表示為,當A、B兩點中有一點在原點時,不妨設點A在原點,如圖1;

A、B兩點都不在原點時:

①如圖2,點AB都在原點的右邊;

②如圖3,點AB都在原點的左邊;

③如圖4,點AB在原點的兩邊

綜上,數(shù)軸上A、B兩點之間的距離

回答下列問題:

1)數(shù)軸上表示25兩點之間的距離是 ,數(shù)軸上表示-2-5的兩點之間的距離是 ,數(shù)軸上表示1-3的兩點之間的距離是 ;

2)數(shù)軸上表示-1的兩點AB之間的距離是 ,如果,那么 ;

3)求的最小值.(提示:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,AB兩點同時從原點O出發(fā),點A以每秒x個單位長度沿x軸的負方向運動,點B以每秒y個單位長度沿y軸的正方向運動.

1)若|x+2y-10|+|2x-y|=0,試分別求出1秒鐘后AOB的面積;

2)如圖2,所示,設∠BAO的鄰補角和∠ABO的鄰補角的平分線相交于點P,問:點A、B在運動的過程中,∠P的大小是否會發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由;

3)如圖3所示,延長BAE,在∠ABO的內(nèi)部作射線BFx軸于點C,若∠EAC、∠FCA、∠ABC的平分線相交于點G,過點GBE的垂線,垂足為H,設∠AGH=α,∠BGC=β,試探究出αβ滿足的數(shù)量關系并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化工材料經(jīng)銷公司購進一種化工原料若干千克,價格為每千克30元。物價部門規(guī)定其銷售單價不高于每千克60元,不低于每千克30元。經(jīng)市場調查發(fā)現(xiàn):日銷售量y(千克)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100。在銷售過程中,每天還要支付其他費用450元。

(1)求出y與x的函數(shù)關系式,并寫出自變量x的取值范圍。

(2)求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關系式。

(3)當銷售單價為多少元時,該公司日獲利最大?最大獲利是多少元。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題8分)2011年新春聯(lián)歡會中,有一個獎游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉 2張哭臉.現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學去翻紙牌

1現(xiàn)小芳一次翻牌機會,若正面笑臉獎,正面哭臉的不獲獎.她從中隨機翻開一張紙牌,小芳獎的概率是

2如果小芳小明都有翻的機會.小芳先翻一張,放回后再翻一張;小明同時翻開兩張紙牌.他們翻開兩張紙牌中只要出現(xiàn)笑臉就獲獎他們獲獎的機會相等嗎?請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠A120°,AB的垂直平分線交BCM,交ABE,AC的垂直平分線交BCN,交ACF,若MN2,則NF=___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點A的坐標為(0,4),線段MN的位置如圖所示,其中點M的坐標為(﹣3,﹣1),點N的坐標為(3,﹣2).

1)將線段MN平移得到線段AB,其中點M的對應點為A,點N的對稱點為B

M平移到點A的過程可以是:先向   平移   個單位長度,再向   平移   個單位長度;

B的坐標為   ;

2)在(1)的條件下,若點C的坐標為(4,0),連接AC,BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABBC,AE平分∠BADBC于點E,AEDE,∠1+2=90°,M、N分別是BACD延長線上的點,∠EAM和∠EDN的平分線交于點F,下列結論:①ABCD;②∠AEB+ADC=180°;③DE平分∠ADC;④∠F為定值.其中結論正確的有(

A. 4B. 1C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在長方形ABCD的對稱軸l上找點P,使得PAB、PBC均為等腰三角形,則滿足條件的點P有 ( )

A.1B.3C.5D.無數(shù)多個

查看答案和解析>>

同步練習冊答案