8.某同學(xué)要證明命題“平行四邊形的對邊相等.”是正確的,他畫出了圖形,并寫出了如下已知和不完整的求證.
已知:如圖,四邊形ABCD是平行四邊形.
求證:AB=CD,BC=DA
(1)補全求證部分;
(2)請你寫出證明過程.
證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC,
∴∠BAC=∠DCA,∠BCA=∠DAC,
在△ABC和△CDA中,$\left\{\begin{array}{l}{∠BAC=∠DCA}&{\;}\\{AC=CA}&{\;}\\{∠BCA=∠DAC}&{\;}\end{array}\right.$,
∴△ABC≌△CDA(ASA),
∴AB=CD,BC=DA..

分析 (1)根據(jù)題意容易得出結(jié)論;
(2)連接AC,與平行四邊形的性質(zhì)得出AB∥CD,AD∥BC,證出∠BAC=∠DCA,∠BCA=∠DAC,由ASA證明△ABC≌△CDA,得出對應(yīng)邊相等即可.

解答 (1)已知:如圖,四邊形ABCD是平行四邊形.
求證:AB=CD,BC=DA;
故答案為:BC=DA;
(2)證明:連接AC,如圖所示:
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC,
∴∠BAC=∠DCA,∠BCA=∠DAC,
在△ABC和△CDA中,$\left\{\begin{array}{l}{∠BAC=∠DCA}&{\;}\\{AC=CA}&{\;}\\{∠BCA=∠DAC}&{\;}\end{array}\right.$,
∴△ABC≌△CDA(ASA),
∴AB=CD,BC=DA;
故答案為:
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC,
∴∠BAC=∠DCA,∠BCA=∠DAC,
在△ABC和△CDA中,$\left\{\begin{array}{l}{∠BAC=∠DCA}&{\;}\\{AC=CA}&{\;}\\{∠BCA=∠DAC}&{\;}\end{array}\right.$,
∴△ABC≌△CDA(ASA),
∴AB=CD,BC=DA.

點評 本題考查了平行四邊形的性質(zhì)、全等三角形的判定與性質(zhì);熟練掌握平行四邊形對邊平行的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.下列四個立體圖形中,它們各自的三視圖都相同的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.下列運算正確的是( 。
A.(-$\frac{3}{2}$)2=-$\frac{9}{4}$B.(3a23=9a6C.5-3÷5-5=$\frac{1}{25}$D.$\sqrt{8}-\sqrt{50}=-3\sqrt{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

16.已知一次函數(shù)y=kx+b-x的圖象與x軸的正半軸相交,且函數(shù)值y隨自變量x的增大而增大,則k,b的取值情況為( 。
A.k>1,b<0B.k>1,b>0C.k>0,b>0D.k>0,b<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.某校學(xué)生利用雙休時間去距學(xué)校10km的炎帝故里參觀,一部分學(xué)生騎自行車先走,過了20min后,其余學(xué)生乘汽車沿相同路線出發(fā),結(jié)果他們同時到達(dá).已知汽車的速度是騎車學(xué)生速度的2倍,求騎車學(xué)生的速度和汽車的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

13.如圖中的四邊形均為矩形,根據(jù)圖形,寫出一個正確的等式am+bm+cm=m(a+b+c).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

20.找出下列各圖形中數(shù)的規(guī)律,依此,a的值為226.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

17.關(guān)于直線l:y=kx+k(k≠0),下列說法不正確的是( 。
A.點(0,k)在l上B.l經(jīng)過定點(-1,0)
C.當(dāng)k>0時,y隨x的增大而增大D.l經(jīng)過第一、二、三象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.在平面直角坐標(biāo)系中,若點A(a,-b)在第一象限內(nèi),則點B(a,b)所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案