【題目】在平面直角坐標系中,點A、B的坐標分別是(0,3)、(﹣4,0),
(1)將△AOB繞點A逆時針旋轉(zhuǎn)90°得到△AEF,點O,B對應(yīng)點分別是E,F(xiàn),請在圖中畫出△AEF,并寫出E、F的坐標;
(2)以O(shè)點為位似中心,將△AEF作位似變換且縮小為原來的 ,在網(wǎng)格內(nèi)畫出一個符合條件的△A1E1F1 .
【答案】
(1)
解:如圖,△AEF為所作,E(3,3),F(xiàn)(3,0)
(2)
解:如圖,△A1E1F1為所作
【解析】(1)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì),畫出點O,B對應(yīng)點E,F(xiàn),從而得到△AEF,然后寫出E、F的坐標;(2)分別連接OE、OF,然后分別去OA、OE、OF的三等份點得到A1、E1、F1 , 從而得到△A1E1F1 .
【考點精析】解答此題的關(guān)鍵在于理解旋轉(zhuǎn)的性質(zhì)的相關(guān)知識,掌握①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛根據(jù)學(xué)習(xí)“數(shù)與式”的經(jīng)驗,想通過由“特殊到一般”的方法探究下面二次根式的運算規(guī)律.
以下是小剛的探究過程,請補充完整;
(1)具體運算,發(fā)現(xiàn)規(guī)律.
特例1:;特例2:;特例3:;特例4: (舉一個符合上述運算特征的例子)
(2)觀察、歸納,得出猜想.
如果n為正整數(shù),用含n的式子表示這個運算規(guī)律; .
(3)證明猜想,確認猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=40°,∠C=60°,AD⊥BC于D,AE是∠BAC的平分線.
(1)求∠DAE的度數(shù);
(2)寫出以AD為高的所有三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】了解學(xué)生零花錢的使用情況,校團委隨機調(diào)查了本校部分學(xué)生每人一周的零花錢數(shù)額,并繪制了如圖甲、乙所示的兩個統(tǒng)計圖(部分未完成).請根據(jù)圖中信息,回答下列問題:
(1)校團委隨機調(diào)查了多少學(xué)生?請你補全條形統(tǒng)計圖;
(2)表示“50元”的扇形的圓心角是多少度?被調(diào)查的學(xué)生每人一周零花錢數(shù)的中位數(shù)是多少元?
(3)四川雅安地震后,全校1000名學(xué)生每人自發(fā)地捐出一周零花錢的一半,以支援災(zāi)區(qū)建設(shè).請估算全校學(xué)生共捐款多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC.作射線AP,過點B作BD⊥AP于點D,連接CD.
(1)當(dāng)射線AP位于圖1所示的位置時
①根據(jù)題意補全圖形;
②求證:AD+BD=CD.
(2)當(dāng)射線AP繞點A由圖1的位置順時針旋轉(zhuǎn)至∠BAC的內(nèi)部,如圖2,直接寫出此時AD,BD,CD三條線段之間的數(shù)量關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①一條直角邊和斜邊上的高對應(yīng)相等的兩個直角三角形全等②有兩條邊相等的兩個直角三角形全等③若兩個直角三角形面積相等,則它們?nèi)?/span>④兩邊和其中一邊的對角對應(yīng)相等的兩個三角形全等。其中錯誤的個數(shù)是:()
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC中,∠A=96°,延長BC到D,∠ABC與∠ACD的平分線相交于點A1∠A1BC與∠A1CD的平分線相交于點A2,依此類推,∠A4BC與∠A4CD的平分線相交于點A5,則∠A5的度數(shù)為( )
A. 19.2° B. 8° C. 6° D. 3°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張圓心角為45°的扇形紙板和圓形紙板按如圖方式分別剪成一個正方形,邊長都為1,則扇形和圓形紙板的面積比是( )
A.5:4
B.5:2
C. :2
D. :
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com