【題目】已知:⊙O的兩條弦ABCD相交于點M,且AB=CD

1)如圖1,連接AD求證:AM=DM

2)如圖2,若ABCD,在弧BD上取一點E,使弧BE=BCAECD于點F,連AD、DE

①利斷∠E與∠DFE是否相等,并說明理由.

②若DE=7,AM+MF=17,求ADF的面積.

【答案】1)詳見解析;(2)①,理由詳見解析;②42

【解析】

1)由弦相等得到弧相等,從而可得到,因此,從而得證;

2)①連接,由弧相等可得到,再由可得到,在通過同弧所對的圓周角相等可知,等量代換即可;②由得到,再通過,即可推出,然后即可算出ADF的面積.

1)∵

2)①

連接,

②∵

的面積

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角三角形ABC,∠BAC90°,D、EBC上的兩點,且BDCE,過D、EDM、EN分別垂直ABAC,垂足為M、N,交與點F,連接AD、AE.其中四邊形AMFN是正方形;ABE≌△ACD;CE2+BD2DE2;當∠DAE45°時,AD2DECD.正確結(jié)論有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】表中所列、7對值是二次函數(shù)圖象上的點所對應的坐標,其中

6

11

11

6

根據(jù)表中提供約信息,有以下4個判斷:①;②;③當時,的值是;④;其中判斷正確的是(

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形ABCD中,EBC邊上一點,連接AE,作AE的垂直平分線交ABG,交CDF,若BG2BE,則DFCF的長為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB//CD,點E是直線AB上的點,過點E的直線l交直線CD于點F,EG平分∠BEFCD于點G.在直線l繞點E旋轉(zhuǎn)的過程中,圖中∠1,∠2的度數(shù)可以分別是(

A.30°,110°B.56°,70°C.70°,40°D.100°40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠BOC140°,I是內(nèi)心,O是外心,則∠BIC等于(

A.130°B.125°C.120°D.115°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,有一個由六個邊長為1的正方形組成的圖案,其中點A,B的坐標分別為(3,5),(6,1).若過原點的直線l將這個圖案分成面積相等的兩部分,則直線l的函數(shù)解析式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,⊙O的半徑為rr0).給出如下定義:若平面上一點P到圓心O的距離d,滿足,則稱點P為⊙O的“隨心點”.

1)當⊙O的半徑r2時,A30),B04),C(﹣,2),D,﹣)中,⊙O的“隨心點”是_____

2)若點E4,3)是⊙O的“隨心點”,求⊙O的半徑r的取值范圍;

3)當⊙O的半徑r2時,直線yx+bb≠0)與x軸交于點M,與y軸交于點N,若線段MN上存在⊙O的“隨心點”,直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點F是邊BC的中點,連接AF并延長交DC的延長線于點E,連接AC、BE.

(1)求證:AB=CE;

(2)若,則四邊形ABEC是什么特殊四邊形?請說明理由.

查看答案和解析>>

同步練習冊答案