【題目】拋物線L:y=﹣x2+bx+c經(jīng)過點(diǎn)A(0,1),與它的對(duì)稱軸直線x=1交于點(diǎn)B.
(1)直接寫出拋物線L的解析式;
(2)如圖1,過定點(diǎn)的直線y=kx﹣k+4(k<0)與拋物線L交于點(diǎn)M、N.若△BMN的面積等于1,求k的值;
(3)如圖2,將拋物線L向上平移m(m>0)個(gè)單位長(zhǎng)度得到拋物線L1,拋物線L1與y軸交于點(diǎn)C,過點(diǎn)C作y軸的垂線交拋物線L1于另一點(diǎn)D.F為拋物線L1的對(duì)稱軸與x軸的交點(diǎn),P為線段OC上一點(diǎn).若△PCD與△POF相似,并且符合條件的點(diǎn)P恰有2個(gè),求m的值及相應(yīng)點(diǎn)P的坐標(biāo).
【答案】(1)y=﹣x2+2x+1;(2)-3;(3)當(dāng)m=2﹣1時(shí),點(diǎn)P的坐標(biāo)為(0,)和(0,);當(dāng)m=2時(shí),點(diǎn)P的坐標(biāo)為(0,1)和(0,2).
【解析】
(1)根據(jù)對(duì)稱軸為直線x=1且拋物線過點(diǎn)A(0,1)利用待定系數(shù)法進(jìn)行求解可即得;
(2)根據(jù)直線y=kx﹣k+4=k(x﹣1)+4知直線所過定點(diǎn)G坐標(biāo)為(1,4),從而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BGxN﹣BGxM=1得出xN﹣xM=1,聯(lián)立直線和拋物線解析式求得x=,根據(jù)xN﹣xM=1列出關(guān)于k的方程,解之可得;
(3)設(shè)拋物線L1的解析式為y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再設(shè)P(0,t),分△PCD∽△POF和△PCD∽△POF兩種情況,由對(duì)應(yīng)邊成比例得出關(guān)于t與m的方程,利用符合條件的點(diǎn)P恰有2個(gè),結(jié)合方程的解的情況求解可得.
(1)由題意知,解得:,
∴拋物線L的解析式為y=﹣x2+2x+1;
(2)如圖1,設(shè)M點(diǎn)的橫坐標(biāo)為xM,N點(diǎn)的橫坐標(biāo)為xN,
∵y=kx﹣k+4=k(x﹣1)+4,
∴當(dāng)x=1時(shí),y=4,即該直線所過定點(diǎn)G坐標(biāo)為(1,4),
∵y=﹣x2+2x+1=﹣(x﹣1)2+2,
∴點(diǎn)B(1,2),
則BG=2,
∵S△BMN=1,即S△BNG﹣S△BMG=BG(xN﹣1)-BG(xM-1)=1,
∴xN﹣xM=1,
由得:x2+(k﹣2)x﹣k+3=0,
解得:x==,
則xN=、xM=,
由xN﹣xM=1得=1,
∴k=±3,
∵k<0,
∴k=﹣3;
(3)如圖2,
設(shè)拋物線L1的解析式為y=﹣x2+2x+1+m,
∴C(0,1+m)、D(2,1+m)、F(1,0),
設(shè)P(0,t),
(a)當(dāng)△PCD∽△FOP時(shí),,
∴,
∴t2﹣(1+m)t+2=0①;
(b)當(dāng)△PCD∽△POF時(shí),,
∴,
∴t=(m+1)②;
(Ⅰ)當(dāng)方程①有兩個(gè)相等實(shí)數(shù)根時(shí),
△=(1+m)2﹣8=0,
解得:m=2﹣1(負(fù)值舍去),
此時(shí)方程①有兩個(gè)相等實(shí)數(shù)根t1=t2=,
方程②有一個(gè)實(shí)數(shù)根t=,
∴m=2﹣1,
此時(shí)點(diǎn)P的坐標(biāo)為(0,)和(0,);
(Ⅱ)當(dāng)方程①有兩個(gè)不相等的實(shí)數(shù)根時(shí),
把②代入①,得:(m+1)2﹣(m+1)+2=0,
解得:m=2(負(fù)值舍去),
此時(shí),方程①有兩個(gè)不相等的實(shí)數(shù)根t1=1、t2=2,
方程②有一個(gè)實(shí)數(shù)根t=1,
∴m=2,此時(shí)點(diǎn)P的坐標(biāo)為(0,1)和(0,2);
綜上,當(dāng)m=2﹣1時(shí),點(diǎn)P的坐標(biāo)為(0,)和(0,);
當(dāng)m=2時(shí),點(diǎn)P的坐標(biāo)為(0,1)和(0,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明準(zhǔn)備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),作為要制作的風(fēng)箏的一個(gè)翅膀,請(qǐng)你根據(jù)圖中的數(shù)據(jù)幫小明計(jì)算出CD的長(zhǎng)度.(結(jié)果精確到0.1cm)(參考數(shù)據(jù):sin60°=0.87,cos60°=0.50,tan60°=1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,等腰直角三角形AOB在如圖所示的位置,點(diǎn)B的橫坐標(biāo)為2,將△AOB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°,得到△A′OB′,則點(diǎn)A′的坐標(biāo)為( 。
A. (1,1) B. (,)
C. (﹣1,1) D. (﹣,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中有一小島P,在距小島P的海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時(shí)測(cè)得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險(xiǎn)?請(qǐng)通過計(jì)算加以說明.如果有危險(xiǎn),輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線 y=ax2﹣5ax+c 交 x 軸于點(diǎn) A,點(diǎn) A 的坐標(biāo)為(4,0).
(1)用含 a 的代數(shù)式表示 c.
(2)當(dāng) a=時(shí),求 x 為何值時(shí) y 取得最小值,并求出 y 的最小值.
(3)當(dāng) a=時(shí),求 0≤x≤6 時(shí) y 的取值范圍.
(4)已知點(diǎn) B 的坐標(biāo)為(0,3),當(dāng)拋物線的頂點(diǎn)落在△AOB 外接圓內(nèi)部時(shí),直接寫出 a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.
⑴求證:ΔABF≌ΔEDF;
⑵若將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小紅在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的點(diǎn)D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A、C、E在同一直線上.
(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形紙片,將長(zhǎng)方形紙片沿圖中虛線剪成四個(gè)形狀和大小完全相同的小長(zhǎng)方形,然后拼成圖②所示的一個(gè)大正方形。
(1)用兩種不同的方法表示圖②中小正方形(陰影部分)的面積:
方法一: ;
方法二: .
(2)(m+n),(mn) ,mn這三個(gè)代數(shù)式之間的等量關(guān)系為___
(3)應(yīng)用(2)中發(fā)現(xiàn)的關(guān)系式解決問題:若x+y=9,xy=14,求xy的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com