【題目】如圖,已知ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(-2.3)、B(-6,0)、C(-1,0)

(1) ABC繞坐標(biāo)原點(diǎn)O旋轉(zhuǎn)180°,畫(huà)出圖形,并寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A′ 的坐標(biāo)________;

(2)ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,

直接寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A″的坐標(biāo)___________;

(3)請(qǐng)直接寫(xiě)出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)___________

【答案】(1)(2,3);(2)(3,2);(3)(7,3)或(5,3)或(3,3).

【解析】分析

(1)由題意先在坐標(biāo)系中分別描出點(diǎn)A、B、C關(guān)于點(diǎn)O的對(duì)稱點(diǎn)A、B、C,再順次連接描出的三個(gè)點(diǎn)即可得到所求圖形,根據(jù)圖形寫(xiě)出點(diǎn)A的坐標(biāo)即可;

(2)由題意先在坐標(biāo)系中描出點(diǎn)A繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90后對(duì)應(yīng)的點(diǎn)A′′,根據(jù)圖形寫(xiě)出點(diǎn)A′′的坐標(biāo)即可;

(3)由題意在坐標(biāo)系中畫(huà)出以點(diǎn)A、B、C為頂點(diǎn)的平行四邊形根據(jù)圖形寫(xiě)出其第4個(gè)頂點(diǎn)的坐標(biāo)即可.

詳解

(1)如下圖所示,圖中的△A′B′C′是所求三角形;由圖可得點(diǎn)A的對(duì)應(yīng)點(diǎn)A的坐標(biāo)為:(23);

(2)如下圖,點(diǎn)A的對(duì)應(yīng)點(diǎn)A″的坐標(biāo)(3,2);

(3)如下圖所示以A、B、C為頂點(diǎn)的平行四邊形共有3個(gè),其第四個(gè)頂點(diǎn)D的坐標(biāo)分別為:(7,3)(5,3)(3,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A,B是數(shù)軸上的點(diǎn),且點(diǎn)A表示數(shù)-3,請(qǐng)參照?qǐng)D并思考,完成下列各題:

(1)將A點(diǎn)向右移動(dòng)4個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是 ,此時(shí) A,B兩點(diǎn)間的距離是 .

(2)若把數(shù)軸繞點(diǎn)A對(duì)折,則對(duì)折后,點(diǎn)B落在數(shù)軸上的位置所表示的數(shù)為 .

(3)若(1)中點(diǎn)B以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),A不動(dòng),多長(zhǎng)時(shí)間后,點(diǎn)B與點(diǎn)A距離為2個(gè)單位長(zhǎng)度?試列式計(jì)算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D是邊AC上一點(diǎn),連BD,給出下列條件:①∠ABD=∠ACB;②AB2=ADAC;③ADBC=ABBD;④ABBC=ACBD.其中單獨(dú)能夠判定△ABC∽△ADB的個(gè)數(shù)是(
A.①②
B.①②③
C.①②④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),AOB為等邊三角形,P是x軸上一個(gè)動(dòng)點(diǎn)(不與原O重合),以線段AP為一邊在其右側(cè)作等邊三角形APQ.

(1)求點(diǎn)B的坐標(biāo);

(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,ABQ的大小是否發(fā)生改變?如不改變,求出其大;如改變,請(qǐng)說(shuō)明理由.

(3)連接OQ,當(dāng)OQAB時(shí),求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某國(guó)發(fā)生8.1級(jí)強(qiáng)烈地震,我國(guó)積極組織搶險(xiǎn)隊(duì)赴地震災(zāi)區(qū)參與搶險(xiǎn)工作,如圖,某探測(cè)隊(duì)在地面A、B兩處均探測(cè)出建筑物下方C處有生命跡象,已知探測(cè)線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米,參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀填空,并完成問(wèn)題:“絕對(duì)值”一節(jié)學(xué)習(xí)后,數(shù)學(xué)老師對(duì)同學(xué)們的學(xué)習(xí)進(jìn)行了拓展.數(shù)學(xué)老師向同學(xué)們提出了這樣的問(wèn)題:“在數(shù)軸上,一個(gè)數(shù)的絕對(duì)值就是表示這個(gè)數(shù)的點(diǎn)到原點(diǎn)的距離.那么,如果用P(a)表示數(shù)軸上的點(diǎn)P表示有理數(shù)a,Q(b)表示數(shù)軸上的點(diǎn)Q表示有理數(shù)b,那么點(diǎn)P與點(diǎn)Q的距離是多少?”

(1)聰明的小明經(jīng)過(guò)思考回答說(shuō):這個(gè)問(wèn)題應(yīng)該有兩種情況.一種是點(diǎn)P和點(diǎn)Q在原點(diǎn)的兩側(cè),此時(shí)點(diǎn)P與點(diǎn)Q的距離是a和b的絕對(duì)值的和,即∣a∣+∣b∣.例如:點(diǎn)A(-3)與點(diǎn)B(5)的距離為∣-3∣+∣-5∣= ;

另一種是點(diǎn)P和點(diǎn)Q在原點(diǎn)的同側(cè),此時(shí)點(diǎn)P與點(diǎn)Q的距離的a和b中,較大的絕對(duì)值減去較小的絕對(duì)值,即∣a∣-∣b∣或∣b∣-∣a∣.例如:點(diǎn)A(-3)與點(diǎn)B(-5)的距離為∣-5∣-∣-3∣= ;

你認(rèn)為小明的說(shuō)法有道理嗎?如果沒(méi)有道理,請(qǐng)你指出錯(cuò)誤之處;如果有道理,請(qǐng)你模仿求出數(shù)軸上點(diǎn)M()與N()之間和點(diǎn)C(-2)與D(-7)之間的距離.

(2)小穎在聽(tīng)了小明的方法后,提出了不同的方法,小穎說(shuō):我們可以不考慮點(diǎn)P和點(diǎn)Q所在的位置,無(wú)論點(diǎn)P與點(diǎn)Q的位置如何,它們之間的距離就是數(shù)a與b的差的絕對(duì)值,即∣a-b∣.例如:點(diǎn)A(-3)與點(diǎn)B(5)的距離就是∣-3-5∣= ;點(diǎn)A(-3)與點(diǎn)B(-5)的距離就是∣(-3)-(-5)∣= ;你認(rèn)為小穎的說(shuō)法有道理嗎?如果沒(méi)有道理,請(qǐng)你指出錯(cuò)誤之處;如果有道理,請(qǐng)你模仿求出數(shù)軸上點(diǎn)M()與N()之間和點(diǎn)C(-1.5)與D(-3.5)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DBAC,且DB=ACEAC的中點(diǎn),

1)求證:BC=DE;

2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,點(diǎn)E在邊BC上,點(diǎn)F在邊AD的延長(zhǎng)線上,且DF=BE=4,連接EF交CD于G.若 = ,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E正方形ABCD外一點(diǎn),點(diǎn)F是線段AE上一點(diǎn),△EBF是等腰直角三角形,其中∠EBF=90°,連接CE、CF.

(1)求證:△ABF≌△CBE;
(2)判斷△CEF的形狀,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案