【題目】如圖,二次函數(shù)的圖象過點,對稱軸為直線,下列結(jié)論中一定正確的是____________(填序號即可).
①;
②若是拋物線上的兩點,當(dāng)時,
③若方程的兩根為,且,則
④
【答案】
【解析】
由拋物線的開口方向判斷a與0的關(guān)系,由拋物線與y軸的交點判斷c與0的關(guān)系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.
解:∵拋物線的開口向上,
∴a>0,
∵拋物線與y軸的交點在y軸的負(fù)半軸,
∴c<0,
∵對稱軸x=,
∴b=-2a<0,
∴abc>0,①正確;
∵是拋物線上的兩點,且縱坐標(biāo)相同,
∴點A、B關(guān)于直線x=1對稱,
∴=2,代入解析式得y=4a+2b+c,
又∵b=-2a,
∴y=c,②正確;
設(shè)函數(shù), ,由題意可知函數(shù)與函數(shù)的圖象關(guān)于x軸對稱,方程的兩根為即為函數(shù)的圖象與直線交點的橫坐標(biāo),故可知,故③錯誤;
由圖象可知:當(dāng)x=1時,y=a+b+c,當(dāng)x=-1,y=a-b+c,
結(jié)合圖象可知,其函數(shù)值都小于零,即a+b+c<0,a-b+c<0,故有 ,∴,即,故④正確,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=﹣x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個新函數(shù)(如圖所示),請你在圖中畫出這個新圖象,當(dāng)直線y=﹣x+m與新圖象有4個交點時,m的取值范圍是( )
A. ﹣<m<3 B. ﹣<m<2 C. ﹣2<m<3 D. ﹣6<m<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交點,拋物線經(jīng)過,兩點,與軸交于另一點.如圖1,點為拋物線上任意一點,過點作軸交于.
(1)求拋物線的解析式;
(2)當(dāng)是直角三角形時,求點坐標(biāo);
(3)如圖2,作點關(guān)于直線的對稱點,作直線與拋物線交于,設(shè)拋物線對稱軸與軸交點為,當(dāng)直線經(jīng)過點時,請你直接寫出的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB為⊙O的直徑,點C,D在⊙O上,連接AD,OC.
(1)如圖1,求證:AD∥OC;
(2)如圖2,過點C作CE⊥AB于點E,求證:AD=2OE;
(3)如圖3,在(2)的條件下,點F在OC上,且OF=BE,連接DF并延長交⊙O于點G,過點G作CH⊥AD于點H,連接CH,若∠CFG=135°,CE=3,求CH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題發(fā)現(xiàn))
(1)如圖1所示,在中,,,點為上一點,作,交于點,則________;
(類比研究)
(2)將繞點順時針旋轉(zhuǎn)到圖2所示位置,此時(1)中的結(jié)論還成立嗎?請說明理由;
(拓展延伸)
(3)若點為邊中點,在繞點旋轉(zhuǎn)的過程中,當(dāng)、、三點共線時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線過點,與軸交于點,連接將沿所在的直線翻折,得到連接.
(1)若求拋物線的解析式.
(2)如圖1,設(shè)的面積為的面積為,若,求的值.
(3)如圖2,若點是半徑為的上一動點,連接當(dāng)點運(yùn)動到某一位置時,的值最大,請求出這個最大值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系,點O是原點,直線y=x+6分別交x軸,y軸于點B,A,經(jīng)過點A的直線y=﹣x+b交x軸于點 C.
(1)求b的值;
(2)點D是線段AB上的一個動點,連接OD,過點O作OE⊥OD交AC于點E,連接DE,將△ODE沿DE折疊得到△FDE,連接AF.設(shè)點D的橫坐標(biāo)為t,AF的長為d,當(dāng)t>﹣3時,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,DE交OA于點G,且tan∠AGD=3.點H在x軸上(點H在點O的右側(cè)),連接DH,EH,FH,當(dāng)∠DHF=∠EHF時,請直接寫出點H的坐標(biāo),不需要寫出解題過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,.
(1)如圖1,折疊使點落在邊上的點處,折痕交、分別于點、,若,則________.
(2)如圖2,折疊使點落在邊上的點處,折痕交、分別于點、.若,求證:四邊形是菱形;
(3)在(1)(2)的條件下,線段上是否存在點,使得和相似?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com