如圖,點A的坐標(biāo)為(3,0),點C的坐標(biāo)為(0,4),OABC為矩形,反比例函數(shù)y=
k
x
的圖象過AB的中點D
精英家教網(wǎng)
,且和BC相交于點E,F(xiàn)為第一象限的點,AF=12,CF=13.
(1)求反比例函數(shù)y=
k
x
和直線OE的函數(shù)解析式;
(2)求四邊形OAFC的面積?
(1)依題意,得點B的坐標(biāo)為(3,4),點D的坐標(biāo)為(3,2),
將D(3,2)代入y=
k
x
,得k=6.
∴反比例函數(shù)的解析式為y=
6
x
;
設(shè)點E的坐標(biāo)為(m,4),將其代入y=
6
x
,得m=
3
2
,
∴點E的坐標(biāo)為(
3
2
,4),
設(shè)直線OE的解析式為y=k1x,
將(
3
2
,4)代入得k1=
8
3
,
∴直線OE的解析式為y=
8
3
x;

精英家教網(wǎng)

(2)連接AC,如圖,
在Rt△OAC中,OA=3,OC=4,
∴AC=5,
而AF=12,CF=13.
∴AC2+AF2=52+122=132=CF2,
∴∠CAF=90°,
∴S四邊形OAFC=S△OAC+S△CAF
=
1
2
×3×4+
1
2
×5×12
=6+30
=36.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•桂平市三模)如圖,點P的坐標(biāo)為(2,
3
2
),過點P作x軸的平行線交y軸于點A,交反比例函數(shù)y=
k
x
(x>0)的圖象于點N;作PM⊥AN交反比例函數(shù)y=
k
x
(x>0)的圖象于點M,PN=4.
(1)求反比例函數(shù)和直線AM的解析式;
(2)求△APM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在直角坐標(biāo)系中,點C的坐標(biāo)為(0,-2),點A與點B在x軸上,且點A與點B的橫坐標(biāo)是方程x2-3x-4=0的兩個根,點A在點B的左側(cè).
(1)求經(jīng)過A、B、C三點的拋物線的關(guān)系式.
(2)如圖,點D的坐標(biāo)為(2,0),點P(m,n)是該拋物線上的一個動點(其中m>0,n<0),連接DP交BC于點E.
①當(dāng)△BDE是等腰三角形時,直接寫出此時點E的坐標(biāo).
②連接CD、CP,△CDP是否有最大面積?若有,求出△CDP的最大面積和此時點P的坐標(biāo);若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A的坐標(biāo)為(-1,0),點B在直線y=x上運動,當(dāng)線段AB最短時,點B的坐標(biāo)為
(-
1
2
,-
1
2
(-
1
2
,-
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點A的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點A的坐標(biāo)為(-1,2),點B的坐標(biāo)為(2,1),有一點C在x軸上移動,則點C到A、B兩點的距離之和的最小值為( 。
A、3
2
B、4
C、3
D、4
2

查看答案和解析>>

同步練習(xí)冊答案