【題目】如圖,在平面直角坐標系中,直角三角形AOB的頂點A、B分別落在坐標軸上.O為原點,點A的坐標為(6,0),點B的坐標為(0,8).動點M從點O出發(fā).沿OA向終點A以每秒1個單位的速度運動,同時動點N從點A出發(fā),沿AB向終點B以每秒個單位的速度運動.當一個動點到達終點時,另一個動點也隨之停止運動,設動點M、N運動的時間為t秒(t>0).
(1)當t=3秒時,直接寫出點N的坐標;
(2)在此運動的過程中,△MNA的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由;
(3)當t為何值時,△MNA是一個等腰三角形?
【答案】(1)N(3,4),;(2)存在,最大值為6;(3)2或或.
【解析】試題分析:(1)根據(jù)A、B的坐標和勾股定理可得AB=10,當t=3秒時,AN= ,即N是AB的中點,由此得出點N的坐標為(3,4),設交點式利用待定系數(shù)法求出拋物線解析式;(2)過N作MA邊上的高NC,先由∠BAO的正弦值求出NC的表達式,而AM=OA-OM,由三角形的面積公式可得到關于S△MNA關于t的函數(shù)關系式,由二次函數(shù)的最值原理即可求出△MNA的最大面積(3)首先求出N點的坐標,然后表示出AM、MN、AN三邊的長,分三種情況討論:①MN=NA、②MN=MA、③NA=MA;直接根據(jù)等量關系列方程求解即可。
試題解析:解:(1)N(3,4)。
∵A(6,0)
∴可設經過O、A、N三點的拋物線的解析式為:y=ax(x﹣6),則將N(3,4)代入得
4=3a(3﹣6),解得a=﹣。
∴拋物線的解析式: 。
(2)存在。過點N作NC⊥OA于C,
由題意,AN=t,AM=OA﹣OM=6﹣t,
∴NC=NAsin∠BAO= 。
∴。
∴△MNA的面積有最大值,且最大值為6。
(3)在Rt△NCA中,AN=t,NC=ANsin∠BAO= ,AC=ANcos∠BAO=t。
∴OC=OA﹣AC=6﹣t。∴N(6﹣t, )。
∴。
又AM=6﹣t且0<t<6,
①當MN=AN時, ,即t2﹣8t+12=0,解得t1=2,t2=6(舍去)。
②當MN=MA時, ,即,解得t1=0(舍去),t2=。
③當AM=AN時,6﹣t=t,即t=。
綜上所述,當t的值取 2或或時,△MAN是等腰三角形。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的邊OA在x軸的負半軸上,邊OC在y軸的正半軸上,且OA=1,tan∠ACB=2,將矩形OABC繞點O按順時針方向旋轉90°后得到矩形ODEF.點A的對應點為點D,點B的對應點為點E,點C的對應點為點F,拋物線y=ax2+bx+2的圖象過點A,C,F.
(1)求拋物線所對應函數(shù)的表達式;
(2)在邊DE上是否存在一點M,使得以O,D,M為頂點的三角形與△ODE相似,若存在,求出經過M點的反比例函數(shù)的表達式,若不存在,請說明理由;
(3)在x軸的上方是否存在點P,Q,使以O,F,P,Q為頂點的平行四邊形的面積是矩形OABC面積的2倍,且點P在拋物線上,若存在,請求出P,Q兩點的坐標;若不能存在,請說明理由;
(4)在拋物線的對稱軸上是否存在一點H,使得HA﹣HC的值最大,若存在,直接寫出點H的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O, .
(1)如果,那么根據(jù)___________,可得=__________度.
(2)如果,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(2,m)和點B(n,﹣3)關于x軸對稱,則m+n的值是( )
A. ﹣1 B. 1 C. 5 D. ﹣5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)據(jù)3,1,5,1,3,4中,數(shù)據(jù)“3”出現(xiàn)的頻數(shù)是( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,利用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不要求寫作法),并根據(jù)要求填空:
(1)作∠ABC的平分線BD交AC于點D;
(2)作線段BD的垂直平分線交AB于點E,交BC于點F.由(1)、(2)可得:線段EF與線段BD的關系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個等腰三角形的兩邊長分別是4cm和5cm,那么此三角形的周長是( )
A. 13cm B. 14cm C. 15cm D. 13cm或14cm
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com