精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在四邊形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的長.

【答案】AB=2-2,CD=4-.

【解析】

此題為幾何題,看題目只是一個四邊形,要求兩條未知邊,那肯定要添輔助線.過點DDHBA延長線于H,作DMBCM.構建矩形HBMD.利用矩形的性質和解直角三角形來求AB、CD的長度.

如圖,過點DDHBA延長線于H,作DMBC于點M.

∵∠B90°,

∴四邊形HBMD是矩形.

HDBM,BHMD,∠ABM=∠ADC90°,

又∵∠C60°,

∴∠ADH=∠MDC30°,

∴在RtAHD中,AD1,∠ADH30°,則AHADDH.

MCBCBMBCDH2.

∴在RtCMD中,CD2MC4DMCD.

ABBHAHDMAH

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,CD⊥BC,BD與AC相交于點E,AB=9,BC=4,DC=3.

(1)求BE的長度;
(2)求△ABE的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖甲,點C將線段AB分成兩部分(AC>BC),如果 = ,那么稱點C為線段AB的黃金分割點.某數學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成面積分別為S1 , S2(S1>S2)的兩部分,如果 = ,那么稱直線l為該圖形的黃金分割線.

(1)如圖乙,在△ABC中,∠A=36°,AB=AC,∠ACB的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結論;
(2)若△ABC在(1)的條件下,如圖丙,請問直線CD是不是△ABC的黃金分割線,并證明你的結論;
(3)如圖丁,在Rt△ABC中,∠ACB=90°,D為斜邊AB上的一點,(不與A,B重合)過D作DE⊥BC于點E,連接AE,CD相交于點F,連接BF并延長,與DE,AC分別交于點G,H.請問直線BH是直角三角形ABC的黃金分割線嗎?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有甲、乙兩個不透明的布袋,甲袋中裝有3個完全相同的小球,分別標有數字0,1,2;乙袋中裝有2個完全相同的小球,分別標有數字﹣1,﹣2.現(xiàn)從甲袋中隨機抽取一個小球,將標有的數字記錄為x,再從乙袋中隨機抽取一個小球,將標有的數字記錄為y,確定點M的坐標為(x,y).
(1)用樹狀圖或列表法列舉點M所有可能的坐標;
(2)求點M(x,y)在二次函數y=x2﹣2x﹣2的圖象上的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ACBCCCDABD,點EAC上,EFABF,且∠1=∠2

(1)試判斷CDEF是否平行并說明理由.

(2)試判斷DGBC是否垂直并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在如圖所示的正方形網格中,每個小正方形的邊長為1,格點三角形(頂點是網格線的交點的三角形)ABC的頂點A,C的坐標分別為A(-4,5),C(-1,3).

(1)請在如圖所示的網格內作出x軸、y軸;

(2)請作出ABC關于y軸對稱的A1B1C1;

(3)寫出點B1的坐標并求出A1B1C1的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B.若AB=8,AD=6 ,AF=4 ,則AE的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】觀察下列銀行標志,從圖案看既是軸對稱圖形又是中心對稱圖形的有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AEBD于點E,CFBD于點F,連接AF,CE,若DE=BF,則下列結論:CF=AE;OE=OF;四邊形ABCD是平行四邊形;圖中共有四對全等三角形.其中正確結論的個數是

A.4 B.3 C2 D.1

查看答案和解析>>

同步練習冊答案