【題目】如圖,矩形ABCD中,AB=4cm,BC=8cm,動點M從點D出發(fā),按折線DCBAD方向以2cm/s的速度運動,動點N從點D出發(fā),按折線DABCD方向以1cm/s的速度運動
(1)若動點M、N同時出發(fā),經(jīng)過幾秒鐘兩點相遇?
(2)若點E在線段BC上,BE=2cm,動點M、N同時出發(fā)且相遇時均停止運動,那么點M運動到第幾秒鐘時,與點A、E、M、N恰好能組成平行四邊形?
【答案】
(1)解:設(shè)t秒時兩點相遇,則有t+2t=24,
解得t=8.
答:經(jīng)過8秒兩點相遇
(2)解:由(1)知,點N一直在AD上運動,所以當點M運動到BC邊上的時候,點A、E、M、N才可能組成平行四邊形,
設(shè)經(jīng)過x秒,四點可組成平行四邊形.分兩種情形:
當點M運動到E的右邊時:①8﹣x=10﹣2x,解得x=2,
當點M運動到E的左邊時,②8﹣x=2x﹣10,解得x=6,
答:第2秒或6秒鐘時,點A、E、M、N組成平行四邊形.
【解析】(1)相遇時,M和N所經(jīng)過的路程正好是矩形的周長,在速度已知的情況下,只需列方程即可解答.(2)因為按照N的速度和所走的路程,在相遇時包括相遇前,N一直在AD上運動,當點M運動到BC邊上的時候,點A、E、M、N才可能組成平行四邊形,其中有兩種情況,即當M到C點時以及在BC上時,所以要分情況討論.
【考點精析】認真審題,首先需要了解平行四邊形的性質(zhì)(平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分),還要掌握矩形的性質(zhì)(矩形的四個角都是直角,矩形的對角線相等)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,∠DAC=65°,點E是CD上一點,BE交AC于點F,將△BCE沿BE折疊,點C恰好落在AB邊上的點C′處,則∠AFC′= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級體育模擬測試中,六名男生引體向上的成績?nèi)缦拢▎挝唬簜):10、6、9、11、8、10,下列關(guān)于這組數(shù)據(jù)描述正確的是( )
A.極差是6
B.眾數(shù)是10
C.平均數(shù)是9.5
D.方差是16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年12月28日“青煙威榮”城際鐵路正式開通,從煙臺到北京的高鐵里程比普快里程縮短了81千米,運行時間減少了9小時,已知煙臺到北京的普快列車里程約為1026千米,高鐵平均時速為普快平均時速的2.5倍.
(1)求高鐵列車的平均時速;
(2)某日王老師要去距離煙臺大約630千米的某市參加14:00召開的會議,如果他買到當日8:40從煙臺至城市的高鐵票,而且從該市火車站到會議地點最多需要1.5小時,試問在高鐵列車準點到達的情況下他能在開會之前到達嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形紙片ABCD中,AB=6,BC=8.
(1)如圖①,將矩形紙片沿AN折疊,點B落在對角線AC上的點E處,求BN的長;
(2)如圖②,點M為AB上一點,將△BCM沿CM翻折至△ECM,ME與AD相交于點G,CE與AD相交于點F,且AG=GE,求BM的長;
(3)如圖③,將矩形紙片ABCD折疊,使頂點B落在AD邊上的點E處,折痕所在直線同時經(jīng)過AB、BC(包括端點),設(shè)DE=x,請直接寫出x的取值范圍: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線 分別與x軸、y軸交于點B、C,且與直線 交于點A.
(1)分別求出點A、B、C的坐標;
(2)若D是線段OA上的點,且△COD的面積為12,求直線CD的函數(shù)表達式;
(3)在(2)的條件下,設(shè)P是射線CD上的點,在平面內(nèi)是否存在點Q,使以O(shè)、C、P、Q為頂點的四邊形是菱形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=﹣ x+4的圖象與x軸、y軸分別相交于點C、D,四邊形ABCD是正方形,反比例函數(shù)y= 的圖象在第一象限經(jīng)過點A.
(1)求點A的坐標以及k的值:
(2)點P是反比例函數(shù)y= (x>0)的圖象上一點,且△PAO的面積為21,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(4,0),O為坐標原點,P是線段OA上任意一點(不含端點O,A),過P、O兩點的二次函數(shù)y1和過P、A兩點的二次函數(shù)y2的圖象開口均向下,它們的頂點分別為B、C,射線OB與AC相交于點D.當OD=AD=3時,這兩個二次函數(shù)的最大值之和等于( )
A.
B.
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com